Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Stem Cell Reports ; 17(11): 2381-2391, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36270284

RESUMO

Immunodeficient mice are widely used in human stem cell transplantation research. Recombination activating gene 1 (Rag1) deletion results in immunodeficiency and leads to accelerated aging in zebrafish with increased cytosolic accumulation of lipofuscin (LF). Unlike zebrafish, mammals have two homologs, Rag1 and Rag2, that regulate adaptive immunity. Currently, little is known if and how Rag1-/- and Rag2-/- may impact aging and LF accumulation in immunodeficient mouse brains and how this may confound results in human neural cell transplantation studies. Here, we demonstrate that in Rag2-/- mouse brains, LF appears early, spreads broadly, emits strong autofluorescence, and accumulates with age. LF is found in various types of glial cells, including xenografted human microglia. Surprisingly, in Rag1-/- mouse brains, LF autofluorescence is seen at much older ages compared with Rag2-/- brains. This study provides direct evidence that Rag2-/- expedites LF occurrence and sets a context for studies using aged immunodeficient mice.


Assuntos
Lipofuscina , Animais , Humanos , Camundongos , Encéfalo/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/metabolismo , Mamíferos/metabolismo , Proteínas Nucleares/metabolismo , Transplante de Células-Tronco
3.
Cell Regen ; 11(1): 32, 2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36056167

RESUMO

Human-mouse chimeras offer advantages for studying the pathophysiology of human cells in vivo. Chimeric mouse brains have been created by engrafting human fetal tissue- or pluripotent stem cell-derived progenitor cells into the neonatal mouse brain. This provides new opportunities to understand human brain development and neurological disorders.

4.
Cell Stem Cell ; 29(7): 1135-1153.e8, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35803230

RESUMO

Microglia are critical in brain development and Alzheimer's disease (AD) etiology. Down syndrome (DS) is the most common genetic developmental disorder and risk factor for AD. Surprisingly, little information is available on the impact of trisomy of human chromosome 21 (Hsa21) on microglial functions during DS brain development and in AD in DS. Using induced pluripotent stem cell (iPSC)-based organoid and chimeric mouse models, we report that DS microglia exhibit an enhanced synaptic pruning function, which alters neuronal synaptic functions. In response to human brain tissue-derived pathological tau, DS microglia undergo cellular senescence and exhibit elevated type-I-interferon signaling. Mechanistically, knockdown of Hsa21-encoded type I interferon receptors, IFNARs, rescues the DS microglial phenotypes both during brain development and in response to pathological tau. Our findings provide in vivo evidence that human microglia respond to pathological tau by exhibiting dystrophic phenotypes. Targeting IFNARs may improve DS microglial functions and prevent senescence.


Assuntos
Doença de Alzheimer , Síndrome de Down , Células-Tronco Pluripotentes Induzidas , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Síndrome de Down/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Interferons/metabolismo , Camundongos , Microglia
5.
Inflammopharmacology ; 30(3): 821-842, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35290551

RESUMO

Colony Stimulating Factor-1 (CSF-1)/Colony Stimulating Factor-1 Receptor (CSF-1R) signaling axis plays an essential role in the development, maintenance, and proliferation of macrophage lineage cells. Within the central nervous system, CSF-1R signaling primarily maintains microglial homeostasis. Microglia, being the resident macrophage and first responder to any neurological insults, plays critical importance in overall health of the human brain. Aberrant and sustained activation of microglia along with continued proliferation and release of neurotoxic proinflammatory cytokines have been reported in various neurological and neurodegenerative diseases. Therefore, halting the neuroinflammatory pathway via targeting microglial proliferation, which depends on CSF-1R signaling, has emerged as a potential therapeutic target for neurological disorders. However, apart from regulating the microglial function, recently it has been discovered that CSF-1R has much broader role in central nervous system. These findings limit the therapeutic utility of CSF-1R inhibitors but also highlight the need for a complete understanding of CSF-1R function within the central nervous system. Moreover, it has been found that selective inhibitors of CSF-1R may be more efficient in avoiding non-specific targeting and associated side effects. Short-term depletion of microglial population in diseased conditions have also been found to be beneficial; however, the dose and therapeutic window for optimum effects may need to be standardized further.This review summarizes the present understanding of CSF-1R function within the central nervous system. We discuss the CSF-1R signaling in the context of microglia function, crosstalk between microglia and astroglia, and regulation of neuronal cell function. We also discuss a few of the neurological disorders with a focus on the utility of CSF-1R inhibitors as potential therapeutic strategy for halting the progression of neurological diseases.


Assuntos
Fator Estimulador de Colônias de Macrófagos , Doenças Neurodegenerativas , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos , Transdução de Sinais , Sistema Nervoso Central/metabolismo , Humanos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Microglia , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo
6.
eNeuro ; 8(1)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33472865

RESUMO

Excessive activation of mTOR in microglia impairs CNS homeostasis and causes severe epilepsy. Autophagy constitutes an important part of mTOR signaling. The contribution of microglial autophagy to CNS homeostasis and epilepsy remains to be determined. Here, we report that ATG7KO mice deficient for autophagy in microglia display a marked increase of myelination markers, a higher density of mature oligodendrocytes (ODCs), and altered lengths of the nodes of Ranvier. Moreover, we found that deficiency of microglial autophagy (ATG7KO) leads to increased seizure susceptibility in three seizure models (pilocarpine, kainic acid, and amygdala kindling). We demonstrated that ATG7KO mice develop severe generalized seizures and display nearly 100% mortality to convulsions induced by pilocarpine and kainic acid. In the amygdala kindling model, we observed significant facilitation of contralateral propagation of seizures, a process underlying the development of generalized seizures. Taken together, our results reveal impaired microglial autophagy as a novel mechanism underlying altered homeostasis of ODCs and increased susceptibility to severe and fatal generalized seizures.


Assuntos
Microglia , Convulsões , Animais , Autofagia , Modelos Animais de Doenças , Camundongos , Oligodendroglia
7.
J Neurosci ; 40(40): 7593-7608, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32868461

RESUMO

Excessive activation of mammalian target of rapamycin (mTOR) signaling is epileptogenic in genetic epilepsy. However, the exact role of microglial mTOR in acquired epilepsy remains to be clarified. In the present study, we found that mTOR is strongly activated in microglia following excitatory injury elicited by status epilepticus. To determine the role of microglial mTOR signaling in excitatory injury and epileptogenesis, we generated mice with restrictive deletion of mTOR in microglia. Both male and female mice were used in the present study. We found that mTOR-deficient microglia lost their typical proliferative and inflammatory responses to excitatory injury, whereas the proliferation of astrocytes was preserved. In addition, mTOR-deficient microglia did not effectively engulf injured/dying neurons. More importantly, microglial mTOR-deficient mice displayed increased neuronal loss and developed more severe spontaneous seizures. These findings suggest that microglial mTOR plays a protective role in mitigating neuronal loss and attenuating epileptogenesis in the excitatory injury model of epilepsy.SIGNIFICANCE STATEMENT The mammalian target of rapamycin (mTOR) pathway is strongly implicated in epilepsy. However, the effect of mTOR inhibitors in preclinical models of acquired epilepsy is inconsistent. The broad presence of mTOR signaling in various brain cells could prevent mTOR inhibitors from achieving a net therapeutic effect. This conundrum has spurred further investigation of the cell type-specific effects of mTOR signaling in the CNS. We found that activation of microglial mTOR is antiepileptogenic. Thus, microglial mTOR activation represents a novel antiepileptogenic route that appears to parallel the proepileptogenic route of neuronal mTOR activation. This may explain why the net effect of mTOR inhibitors is paradoxical in the acquired models of epilepsy. Our findings could better guide the use of mTOR inhibitors in preventing acquired epilepsy.


Assuntos
Epilepsia do Lobo Temporal/metabolismo , Microglia/metabolismo , Neurônios/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Astrócitos/metabolismo , Epilepsia do Lobo Temporal/etiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/patologia , Fagocitose , Pilocarpina/toxicidade , Serina-Treonina Quinases TOR/genética
8.
J Vis Exp ; (151)2019 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31566603

RESUMO

Significant studies have been carried out to understand effective management of intestinal fibrosis. However, the lack of better knowledge of fibrosis has hindered the development of a preventative drug. Primarily, finding a suitable animal model is challenging in understanding the mechanism of Crohn's-associated intestinal fibrosis pathology. Here, we adopted an effective method where TNBS chemical exposure to mice rectums produces substantially deep ulceration and chronic inflammation, and the mice then chronically develop intestinal fibrosis. Also, we describe a technique where a rapamycin injection shows inhibitory effects on TNBS-mediated fibrosis in the mouse model. To assess the underlying mechanism of fibrosis, we methodically discuss a procedure for purifying Cx3Cr1+ cells from the lamina propria of TNBS-treated and control mice. This detailed protocol will be helpful to researchers who are investigating the mechanism of fibrosis and pave the path to find a better therapeutic invention for Crohn's-associated intestinal fibrosis.


Assuntos
Doença de Crohn/patologia , Intestinos/efeitos dos fármacos , Sirolimo/farmacologia , Ácido Trinitrobenzenossulfônico/farmacologia , Animais , Colite/patologia , Modelos Animais de Doenças , Mucosa Intestinal/patologia , Intestinos/patologia , Camundongos
9.
eNeuro ; 6(4)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31201215

RESUMO

Microglia play a pivotal role in maintaining homeostasis of the CNS. There is growing interest in understanding how microglia influence normal brain function and disease progression. Several microglia-specific Cx3cr1-Cre lines have been developed and have become indispensable tools in many investigations of microglial function. However, some recent studies have reported that these lines may have significant leakage into neurons. Other studies have reported that Cx3cr1 is expressed in non-microglial cells, including neurons and astrocytes, in vitro or in vivo either during brain development or upon neurological insult. All these reports raise serious concerns about the trustworthiness of these Cre-lines and whether the conclusions drawn from previous studies are valid. Here, we found that a floxed fluorescent reporter mouse line which has been frequently used to verify Cre lines displayed spontaneous expression of the GFP reporter, independent of Cre recombinase, thus revealing a potential caveat in assessing cre lines. We further confirmed that two Cx3cr1-Cre mouse lines can drive fluorescent reporter expression largely restrictively in microglia. Finally, we clarified that these two mouse lines maintain microglia-specific expression even following excitatory injury. Together, our findings confirm that two previously created Cx3cr1-Cre lines remain as invaluable tools for studying microglia. Moreover, to ensure the quality of data generated and the soundness of conclusions drawn from such data, it should be compulsory to thoroughly examine reporter lines for spontaneous leakiness when labeling cells to study CNS function and diseases.


Assuntos
Encéfalo/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Expressão Gênica , Integrases/metabolismo , Microglia/metabolismo , Animais , Astrócitos/metabolismo , Feminino , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos Transgênicos , Neurônios/metabolismo , Reprodutibilidade dos Testes
10.
Mucosal Immunol ; 12(3): 612-623, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30765845

RESUMO

Intestinal fibrosis is an excessive proliferation of myofibroblasts and deposition of collagen, a condition frequently seen in Crohn's disease (CD). The mechanism underlying myofibroblast hyper-proliferation in CD needs to be better understood. In this report, we found that mTOR inhibitor rapamycin or mTOR deletion in CX3Cr1+ mononuclear phagocytes inhibits expression of interleukin (IL)-23, accompanied by reduced intestinal production of IL-22 and ameliorated fibrosis in the TNBS-induced fibrosis mouse model. This inhibition of IL-23 expression is associated with elevated autophagy activity. Ablating the autophagy gene Atg7 increases the expression of IL-23, leading to increased expression of IL-22 and increased fibrosis. Both induction of IL-22 and intestinal fibrosis occurred in RAG-/- mice and depletion of innate lymphoid cells (ILCs) attenuates the fibrotic reaction, suggesting that the pro-fibrotic process is independent of T and B cells. Moreover, IL-22 facilitates the transformation of fibroblasts into myofibroblasts. Finally, the fibrotic reaction was attenuated upon neutralization of either IL-23 or IL-22. Altogether, this study elucidated a signaling cascade underlying intestinal fibrosis in which altered mTOR/autophagy in CX3Cr1+ mononuclear phagocytes up-regulates the IL-23/IL-22 axis, leading to an excessive fibrotic response. Thus, our findings suggest that this cascade could be a therapeutic target for alleviation of CD fibrosis.


Assuntos
Doença de Crohn/imunologia , Interleucina-23/metabolismo , Interleucinas/metabolismo , Intestinos/patologia , Fagócitos/imunologia , Animais , Anticorpos Neutralizantes/metabolismo , Autofagia/genética , Proteína 7 Relacionada à Autofagia/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Feminino , Fibrose , Humanos , Imunidade Inata , Interleucina-23/imunologia , Interleucinas/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Interleucina 22
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...