Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Analyst ; 149(3): 712-728, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-37755066

RESUMO

Diabetes, which is the seventh leading cause of death globally, necessitates real-time blood glucose monitoring, a process that is often invasive. A promising alternative is sweat glucose monitoring, which typically uses transition metals and their oxide nanomaterials as sensors. Despite their excellent surface-to-volume ratio, these materials have some drawbacks, including poor conductivity, structural collapse, and aggregation. As a result, selecting highly electroconductive materials and optimizing their nanostructures is critical. In this work, we developed a high-performance, low-cost, nonenzymatic sensor for sweat glucose detection, using the thermally grown native oxide of copper (CuNOx). By heating Cu foil at 160, 250, and 280 °C, we grew a native oxide layer of approximately 140 nm cupric oxide (CuO), which is excellent for glucose electrocatalysis. Using cyclic voltammetry, we found that our CuNOx sensors prepared at 280 °C exhibited a sensitivity of 1795 µA mM-1 cm-2, a linear range up to the desired limit of 1.00 mM for sweat glucose with excellent linearity (R2 = 0.9844), and a lower limit of detection of 135.39 µM. For glucose sensing, the redox couple Cu(II)/Cu(III) oxidizes glucose to gluconolactone and subsequently to gluconic acid, producing an oxidation current in an alkaline environment. Our sensors showed excellent repeatability and stability (remaining stable for over a year) with a relative standard deviation (RSD) of 2.48% and 4.17%, respectively, for 1 mM glucose. The selectivity, when tested with common interferants found in human sweat and blood, showed an RSD of 4.32%. We hope that the electrocatalytic efficacy of the thermally grown CuNOx sensors for glucose sensing can introduce new avenues in the fabrication of sweat glucose sensors.


Assuntos
Técnicas Biossensoriais , Glicemia , Humanos , Óxidos , Suor , Cobre/química , Automonitorização da Glicemia , Glucose/química , Técnicas Eletroquímicas , Eletrodos
2.
ACS Sens ; 5(3): 620-636, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32102542

RESUMO

Cannabinoid sensing in biofluids provides great insight into the effects of medicinal cannabis on the body. The prevalence of cannabis for pain management and illicit drug use necessitates knowledge translation in cannabinoids. In this Review, we provide an overview of the current detection methods of cannabinoids in bodily fluids emphasizing electrochemical sensing. First, we introduce cannabinoids and discuss the structure and metabolism of Δ9-THC and its metabolites in relation to blood, urine, saliva, sweat, and breath. Next, we briefly discuss lab based techniques for cannabinoids in biofluids. While these techniques are highly sensitive and specific, roadside safety requires a quick, portable, and cost-effective sensing method. These needs motivated a comprehensive review of advantages, disadvantages, and future directions for electrochemical sensing of cannabinoids. The literature shows the lowest limit of detection to be 3.3 pg of Δ9-THC/mL using electrochemical immunosensors, while electrodes fabricated with low cost methods such as screen-printing and carbon paste can detect as little as 25 and 1.26 ng of Δ9-THC/mL, respectively. Future research will include nanomaterial modified working electrodes, for simultaneous sensing of multiple cannabinoids. Additionally, there should be an emphasis on selectivity for cannabinoids in the presence of interfering compounds. Sensors should be fully integrated on biocompatible substrates with control electronics and intelligent components for wearable diagnostics. We hope this Review will prove to be the seminal work in the electrochemical sensing of cannabinoids.


Assuntos
Secreções Corporais/química , Canabinoides/análise , Técnicas Eletroquímicas , Testes Respiratórios , Canabinoides/sangue , Canabinoides/farmacocinética , Canabinoides/urina , Cannabis , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...