Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38140518

RESUMO

A major portion of maize is produced under rainfed conditions in the tropics with relatively poor yield because of the unpredictable and irregular distribution of seasonal rainfall, as well as a decline in pre-rainy season rainfall due to climate change, so identification of sustainable production options is utmost needed. Thus, the present studies were conducted in a greenhouse (GH) to ascertain the water stress-tolerant traits of maize and at the field level in the tropical environment of Thailand to see the stimulating possibility of the ascertained traits in a locally popular cultivar using ethephon. Depending on tolerance level, three maize genotypes (Suwan 2301 > Suwan 4452 > S 7328) were tested under different water conditions-well-watered, short-term, and long-term water stress-in the GH. At the field level, the locally popular maize cultivar Suwan 5819 was examined with six ethephon levels (doses in g a.i. ha-1 of ethephon, i.e., T1, 281 at V6 stage; T2, 281 at V6 + 281 at V10 stage; T3, 281 at V10 stage; T4, 562 at V6 stage; T5, 562 at V6 + 562 at V10 stage; T6, 562 at V10 stage) against no ethephon application (T0) under rainfed conditions. Maize suffered from the scarcity of sufficient rainfall during 26-39 days after planting (DAP) and 43-63 DAP in the field. The yield index (YI) was identified from biplot analysis as one of the suitable standards for drought tolerance checks for maize at GH as well as at field level in the tropics. The YI value of observed agro-physio-biochemical traits of maize in GH showed that relative water content (RWC, 1.23), stem base diameter (SBD, 1.21), total soluble sugar (TSS, 1.15), proline (Pr, 1.13), aboveground plant biomass (APB, 1.13), root weight (RW, 1.13), relative growth rate (RGR, 1.15), specific leaf weight (SLW, 1.12), and net assimilation rate (NAR, 1.08) were the most desirable. Efforts were made to stimulate these traits under water stress at the field level. Ethephon application as T1 helped to gain higher kernel yield (KY) (5.26 t ha-1) with the support of higher RWC (90.38%), proline (24.79 µmol g-1 FW), TSS (1629 mg g-1 FW), SBD (24.49 mm), APB (271.34 g plant-1), SLW (51.71 g m-2), RGR (25.26 mg plant-1 day-1), and NAR (0.91 mg cm-2 day-1) compared to others, especially no ethephon application. Furthermore, the attributes SLW, SBD, Pr, heat utilization efficiency (HUE), 100-kernel weight, TSS, electrolyte leakage, and lodging percentage showed a substantial direct effect and significant correlation with KY. Aside from higher KY, ethephon application as T1 tactics resulted in higher values of energy efficiency (1.66), HUE (2.99 kg ha-1 °C days-1), gross margin (682.02 USD ha-1), MBCR (3.32), and C absorption (6.19 t C ha-1), indicating that this practice may be a good option for maize sustainable production under rainfed conditions.

2.
Front Plant Sci ; 12: 717178, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712250

RESUMO

Water deficit is a major limiting condition for adaptation of maize in tropical environments. The aims of the current observations were to evaluate the kernel water relations for determining kernel developmental progress, rate, and duration of kernel filling, stem reserve mobilization in maize. In addition, canopy temperature, cell membrane stability, and anatomical adaptation under prolonged periods of pre- and post-anthesis water deficit in different hybrids was quantified to support observations related to kernel filling dynamics. In this context, two field experiments in two consecutive years were conducted with five levels of water regimes: control (D1), and four water deficit treatments [V10 to V13 (D2); V13 to V17 (D3); V17 to blister stage (D4); blisters to physiological maturity (D5)], on three maize hybrids (Pioneer 30B80, NK 40, and Suwan 4452) in Expt. 1. Expt. 2 had four water regimes: control (D1), three water deficit treatments [V10 to anthesis (D2); anthesis to milk stage (D3); milk to physiological maturity (D4)], and two maize hybrids (NK 40 and Suwan 4452). Water deficit imposed at different stages significantly reduced maximum kernel water content (MKWC), kernel filling duration (KFD), final kernel weight (FKW), and kernel weight ear-1 while it increased kernel water loss rate (KWLR), kernel filling rate (KFR), and stem weight depletion (SWD) across maize hybrids in both experiments. The lowest MKWC under water deficit was at D3 in both experiments, indicating that lower KFR results in lowest FKW in maize. Findings indicate that the MKWC (R 2 = 0.85 and 0.41) and KFR (R 2 = 0.62 and 0.37) were positively related to FKW in Expt. 1 and 2, respectively. The KFD was reduced by 5, 7, 7, and 11 days under water deficit at D3, D4 in Expt. 2 and D4, D5 in Expt. 1 as compared to control, respectively. Water deficit at D5 in Expt. 1 and D4 in Expt. 2 increased KWLR, KFR, and SWD. In Expt. 2, lower canopy temperature and electrical conductivity indicated cell membrane stability across water regimes in NK 40. Hybrid NK 40 under water deficit had significantly higher cellular adaptation by increasing the number of xylem vessel while reducing vessel diameter in leaf mid-rib and attached leaf blade. These physiological adjustments improved efficient transport of water from root to the shoot, which in addition to higher kernel water content, MKWC, KFD, KFR, and stem reserve mobilization capacity, rendered NK 40 to be better adapted to water-deficit conditions under tropical environments.

3.
J Environ Manage ; 286: 112172, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33639424

RESUMO

Local rice parboiling industries of Bangladesh are burdened with heavy emission. Despite recent modification in the rice-parboiling boiler, the amount of stack emission (especially particulate matter) from local rice parboiling industry is still considerably high to jeopardize public health and environmental sustainability. There is no provision of flue gas cleaning in these industries since flue gas cleaning often requires significant investment, complicated installation and heavy-maintenance. Therefore, a modified flue gas cleaning system, namely Ash removal unit (ARU) was designed for simultaneously and synergistically removing particulate matter (PM), SO2, NOx, CO2 and heat from flue gas of local rice parboiling industries. In this study, ARU was incorporated in a local rice parboiling industry in order to evaluate the co-removal efficiency achieved by the ARU. Installation of ARU eliminated PM from flue gas by 91.8%, while it removed 78.5% SO2, 78.3% NOx and 23.9% CO2 respectively from the emitting stack. Other than flue gas cleaning , ARU also facilitates heat exchange between flue gas and boiler feed water. Hence, flue gas temperature was dropped by 42.1%, while boiler feed water temperature was raised by 36% in 30 min. Moreover, adopting ARU also improved the ambient air quality surrounding the industrial area, since it reduced SO2, NOx, SPM, PM2.5 and PM10 level in ambient air by 81.7%, 78.2%, 21.1%, 22.9% and 43.1% respectively.


Assuntos
Poluentes Atmosféricos , Oryza , Poluentes Atmosféricos/análise , Bangladesh , Temperatura Alta , Material Particulado/análise
4.
PLoS One ; 9(11): e111101, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25369061

RESUMO

Citrus macroptera Montr. (C. macroptera) is locally known as Satkara. The fruit of this plant is used as appetite stimulant and in the treatment of fever. This study therefore aimed to evaluate the toxic effects of the fruit extract using some biochemical and hematological parameters in rat model. The effects of methanol extract of Citrus macroptera Montr. fruit administered at 250, 500 and 1000 mg/kg body weight were investigated on hematological and biochemical parameters in Sprague-Dawley female rats. Moreover, histopathological study was performed to observe the presence of pathological lesions in primary body organs. The extract presented no significant effect on body weight, percent water content, relative organ weight and hematological parameters in rat. Significant decrease from control group was observed in the levels of triglyceride, total cholesterol, low density lipoprotein and very low density lipoprotein; thus leading to significant decrease of cardiac risk ratio, castelli's risk index-2, atherogenic coefficient and atherogenic index of plasma at all doses. 500 mg/kg dose significantly decreased alkaline phosphatase (P<0.05), 1000 mg/kg dose significantly increased high density lipoprotein cholesterol (P<0.05) and 250 mg/kg dose significantly decreased the level of glycated hemoglobin (P<0.05) from the control group. There were no significant alterations observed with other serum biochemical parameters. Histopathological study confirmed the absence of inflammatory and necrotic features in the primary body organs. Study results indicate that methanolic fruit extract is unlikely to have significant toxicity. Moreover, these findings justified the cardio-protective, moderate hepato-protective and glucose controlling activities of the fruit extract.


Assuntos
Peso Corporal/efeitos dos fármacos , Citrus/química , Extratos Vegetais/toxicidade , Fosfatase Alcalina/sangue , Animais , Colesterol/sangue , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Citrus/metabolismo , Feminino , Frutas/química , Frutas/metabolismo , Rim/patologia , Fígado/patologia , Pulmão/patologia , Metanol/química , Miocárdio/patologia , Tamanho do Órgão/efeitos dos fármacos , Extratos Vegetais/química , Ratos , Ratos Sprague-Dawley , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...