Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Microdevices ; 26(1): 4, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095755

RESUMO

Minimally invasive microneedle (MN) is an emerging technology platform for wearable and implantable diagnostics and therapeutics systems. These short MNs offer pain-free insertion and simple operation. Among the MN technologies proposed to enhance interstitial fluid (ISF) extraction, porous and swellable (P-S) hydrogels absorb analyte molecules across the entire lateral surface. Currently, the design, development, and optimization of the MNs rely on empirical, iterative approaches. Based on theory of fluid flow and analyte diffusion through geometrically complex biomimetic systems, here we derive a generalized physics-guided model for P-S MN sensors. The framework (a) quantifies MN extracting efficiency [Formula: see text] in terms of its geometric and physical properties, and (b) suggests strategies to optimize sensor response while satisfying the mechanical constraints related to various skin-types (e.g., mouse, pig, humans, etc.). Our results show that, despite the differences in geometry and composition, P-S MNs obey a universal scaling response, [Formula: see text] with [Formula: see text] being MN length, diffusivity, and radius, respectively, and [Formula: see text], [Formula: see text] and [Formula: see text] are the ratio between approximate vs. exact analytical solutions, the effective biofluid transfer coefficient between dermis and skin, and the exponent for the power-law approximation, respectively. These parameters quantify the biomolecule transfer through the dermis-to-MN interface at different scaling limits. P-S MNs outperform hollow MNs by a 2-6x enhancement factor; however, the buckling-limit of insertion defines the maximized functionality of the sensor. Our model, validated against experimental results and numerical simulations, offers a predictive design framework to significantly reduce the optimization time for P-S MN-based sensor platforms.


Assuntos
Agulhas , Dispositivos Eletrônicos Vestíveis , Humanos , Camundongos , Animais , Suínos , Pele , Administração Cutânea , Sistemas de Liberação de Medicamentos/métodos
2.
ACS Nano ; 17(19): 19076-19086, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37772990

RESUMO

The crucial role of nanocrystalline morphology in stabilizing the ferroelectric orthorhombic (o)-phase in doped-hafnia films is achieved via chemical solution deposition (CSD) by intentionally retaining carbonaceous impurities to inhibit grain growth. However, in the present study, large-grained (>100 nm) La-doped HfO2 (HLO) films are grown directly on silicon by adopting engineered water-diluted precursors with a minimum carbonaceous load and excellent shelf life. The o-phase stabilization is accomplished through a well-distributed La dopant, which generates uniformly populated oxygen vacancies, eliminating the need for oxygen-scavenging electrodes. These oxygen-deficient HLOs show a maximum remnant polarization of 37.6 µC/cm2 (2Pr) without wake-up and withstand large fields (>6.2 MV/cm). Furthermore, CSD-HLO in series with Al2O3 improves switching of MOSFETs (with an amorphous oxide channel) based on the negative capacitance effect. Thus, uniformly distributed oxygen vacancies serve as a standalone factor in stabilizing the o-phase, enabling efficient wake-up-free ferroelectricity without the need for nanostructuring, capping stresses, or oxygen-reactive electrodes.

3.
Science ; 377(6613): 1425-1430, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36137050

RESUMO

Realizing solution-processed heterostructures is a long-enduring challenge in halide perovskites because of solvent incompatibilities that disrupt the underlying layer. By leveraging the solvent dielectric constant and Gutmann donor number, we could grow phase-pure two-dimensional (2D) halide perovskite stacks of the desired composition, thickness, and bandgap onto 3D perovskites without dissolving the underlying substrate. Characterization reveals a 3D-2D transition region of 20 nanometers mainly determined by the roughness of the bottom 3D layer. Thickness dependence of the 2D perovskite layer reveals the anticipated trends for n-i-p and p-i-n architectures, which is consistent with band alignment and carrier transport limits for 2D perovskites. We measured a photovoltaic efficiency of 24.5%, with exceptional stability of T99 (time required to preserve 99% of initial photovoltaic efficiency) of >2000 hours, implying that the 3D/2D bilayer inherits the intrinsic durability of 2D perovskite without compromising efficiency.

4.
Nat Commun ; 12(1): 3559, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34117235

RESUMO

Various large-area growth methods for two-dimensional transition metal dichalcogenides have been developed recently for future electronic and photonic applications. However, they have not yet been employed for synthesizing active pixel image sensors. Here, we report on an active pixel image sensor array with a bilayer MoS2 film prepared via a two-step large-area growth method. The active pixel of image sensor is composed of 2D MoS2 switching transistors and 2D MoS2 phototransistors. The maximum photoresponsivity (Rph) of the bilayer MoS2 phototransistors in an 8 × 8 active pixel image sensor array is statistically measured as high as 119.16 A W-1. With the aid of computational modeling, we find that the main mechanism for the high Rph of the bilayer MoS2 phototransistor is a photo-gating effect by the holes trapped at subgap states. The image-sensing characteristics of the bilayer MoS2 active pixel image sensor array are successfully investigated using light stencil projection.

5.
Adv Mater ; 32(46): e2004456, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33043514

RESUMO

The vision system of arthropods consists of a dense array of individual photodetecting elements across a curvilinear surface. This compound-eye architecture could be a useful model for optoelectronic sensing devices that require a large field of view and high sensitivity to motion. Strategies that aim to mimic the compound-eye architecture involve integrating photodetector pixels with a curved microlens, but their fabrication on a curvilinear surface is challenged by the use of standard microfabrication processes that are traditionally designed for planar, rigid substrates (e.g., Si wafers). Here, a fractal web design of a hemispherical photodetector array that contains an organic-dye-sensitized graphene hybrid composite is reported to serve as an effective photoactive component with enhanced light-absorbing capabilities. The device is first fabricated on a planar Si wafer at the microscale and then transferred to transparent hemispherical domes with different curvatures in a deterministic manner. The unique structural property of the fractal web design provides protection of the device from damage by effectively tolerating various external loads. Comprehensive experimental and computational studies reveal the essential design features and optoelectronic properties of the device, followed by the evaluation of its utility in the measurement of both the direction and intensity of incident light.

6.
Proc Natl Acad Sci U S A ; 116(31): 15398-15406, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31308234

RESUMO

Flexible biocompatible electronic systems that leverage key materials and manufacturing techniques associated with the consumer electronics industry have potential for broad applications in biomedicine and biological research. This study reports scalable approaches to technologies of this type, where thin microscale device components integrate onto flexible polymer substrates in interconnected arrays to provide multimodal, high performance operational capabilities as intimately coupled biointerfaces. Specificially, the material options and engineering schemes summarized here serve as foundations for diverse, heterogeneously integrated systems. Scaled examples incorporate >32,000 silicon microdie and inorganic microscale light-emitting diodes derived from wafer sources distributed at variable pitch spacings and fill factors across large areas on polymer films, at full organ-scale dimensions such as human brain, over ∼150 cm2 In vitro studies and accelerated testing in simulated biofluids, together with theoretical simulations of underlying processes, yield quantitative insights into the key materials aspects. The results suggest an ability of these systems to operate in a biologically safe, stable fashion with projected lifetimes of several decades without leakage currents or reductions in performance. The versatility of these combined concepts suggests applicability to many classes of biointegrated semiconductor devices.

7.
Environ Int ; 127: 531-539, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30981911

RESUMO

The effective utilization of slag-based Silicon fertilizer (silicate fertilizer) in agriculture to improve crop productivity and to mitigate environmental consequences turns it into a high value added product in sustainable agriculture. Despite the integral role of soil microbiome in agricultural production and virtually all ecosystem processes, our understanding of the microbial role in ecosystem functions and agricultural productivity in response to the silicate fertilizer amendment is, however, elusive. In this study, using 16S rRNA gene and ITS amplicon illumina sequencing and a functional gene microarray, i.e., GeoChip 5, we report for the first time the responses of soil microbes and their functions to the silicate fertilizer amendment in two different geographic races of Oryza sativa var. Japonica (Japonica rice) and var. Indica (Indica rice). The silicate fertilizer significantly increased soil pH, photosynthesis rate, nutrient (i.e., C, Si, Fe, P) availability and crop productivity, but decreased N availability and CH4 and N2O emissions. Moreover, the silicate fertilizer application significantly altered soil bacterial and fungal community composition and increased abundance of functional genes involved in labile C degradation, C and N fixation, phosphorus utilization, CH4 oxidation, and metal detoxification, whereas those involve in CH4 production and denitrification were decreased. The changes in the taxonomic and functional structure of microbial communities by the silicate fertilizer were mostly regulated by soil pH, plant photosynthesis, and nutrient availability. This study provides novel insights into our understanding of microbial functional processes in response to the silicate fertilizer amendment in rice cropping systems and has important implications for sustainable rice production.


Assuntos
Fertilizantes/análise , Microbiota , Oryza , Microbiologia do Solo , Agricultura , Bactérias/classificação , Oryza/genética , RNA Ribossômico 16S/genética , Solo/química
8.
Sci Total Environ ; 662: 591-599, 2019 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-30699379

RESUMO

Nitrous oxide (N2O) is a major greenhouse gas (GHG) with high global warming potential. A majority of the N2O flux comes from agricultural sources, mainly due to nitrogen (N) fertilization. The soil N2O flux, induced by N fertilization, mainly originated from two different sources, i.e., fertilizer and soil organic nitrogen (SON). It is essential to know the individual contribution of these two different sources in total N2O flux for planning necessary mitigation strategies. It is also indispensable to know the seasonal difference of emission factors (EF) for having more accurate N2O inventory. Therefore, an experiment was conducted in a South Korean upland soil during summer and winter seasons using 15N labeled urea as an artificial N source and source specific N2O emissions were distinguished under different environmental conditions. To characterize the N2O emissions from urea, 0, 50, 100 and 200% of the Korean N recommendation rate was selected for specified crops. The Korean N recommendation rate for red pepper (Capsicum annuum) and garlic (Allium sativum) was 190 and 250 kg N ha-1, respectively. Direct emissions from urea were estimated from the difference of 15N2O flux emitted from 15N-urea treated soil and the natural abundance of 15N2O. From total N2O fluxes, urea originated N2O flux was 0.87% and 0.13% of the applied N in warm and cold seasons, respectively and the rest comes from SON. Nitrous oxide EF in the warm season was 2.69% of applied N and in the cold season that was 0.25%. Nitrous oxide fluxes showed a significant exponential relationship with soil temperature. The results show the necessity of considering the different N2O EF for warm and cold cropping seasons to reduce uncertainty in N2O inventory. The findings of this research may help better understand N2O source partitioning and the emission budget from warm and cold cropping seasons.

9.
Nat Commun ; 9(1): 2130, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29849026

RESUMO

State-of-the-art quantum-well-based devices such as photovoltaics, photodetectors, and light-emission devices are enabled by understanding the nature and the exact mechanism of electronic charge transport. Ruddlesden-Popper phase halide perovskites are two-dimensional solution-processed quantum wells and have recently emerged as highly efficient semiconductors for solar cell approaching 14% in power conversion efficiency. However, further improvements will require an understanding of the charge transport mechanisms, which are currently unknown and further complicated by the presence of strongly bound excitons. Here, we unambiguously determine that dominant photocurrent collection is through electric field-assisted electron-hole pair separation and transport across the potential barriers. This is revealed by in-depth device characterization, coupled with comprehensive device modeling, which can self-consistently reproduce our experimental findings. These findings establish the fundamental guidelines for the molecular and device design for layered 2D perovskite-based photovoltaics and optoelectronic devices, and are relevant for other similar quantum-confined systems.

10.
J Hazard Mater ; 353: 236-243, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29674098

RESUMO

Over the past decades, with increasing steel manufacturing, the huge amount of by-products (slags) generated need to be reused in an efficient way not only to reduce landfill slag sites but also for sustainable and eco-friendly agriculture. Our preliminary laboratory study revealed that compared to blast furnace slag, electric arc furnace slag and ladle furnace slag, the Linz-Donawitz converter (LD) slag markedly decreased CH4 production rate and increased microbial activity. In the greenhouse experiment, the LD slag amendment (2.0 Mg ha-1) significantly (p < 0.05) increased grain yield by 10.3-15.2%, reduced CH4 emissions by 17.8-24.0%, and decreased inorganic As concentrations in grain by 18.3-19.6%, compared to the unamended control. The increase in yield is attributed to the increased photosynthetic rates and increased availability of nutrients to the rice plant. Whereas, the decrease in CH4 emissions could be due to the higher Fe availability in the slag amended soil, which acted as an alternate electron acceptor, thereby, suppressed CH4 emissions. The more Fe-plaque formation which could adsorb more As and the competitive inhibition of As uptake with higher availability of Si could be the reason for the decrease in As uptake by rice cultivated with LD slag amendment.


Assuntos
Poluentes Atmosféricos/metabolismo , Arsênio/metabolismo , Resíduos Industriais , Metano/metabolismo , Oryza/metabolismo , Poluentes do Solo/metabolismo , Aço , Adsorção , Poluição do Ar/prevenção & controle , Arsênio/química , Grão Comestível/metabolismo , Ferro/química , Metalurgia , Medição de Risco , Poluentes do Solo/química
11.
Proc Natl Acad Sci U S A ; 113(42): 11682-11687, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27791052

RESUMO

Materials that can serve as long-lived barriers to biofluids are essential to the development of any type of chronic electronic implant. Devices such as cardiac pacemakers and cochlear implants use bulk metal or ceramic packages as hermetic enclosures for the electronics. Emerging classes of flexible, biointegrated electronic systems demand similar levels of isolation from biofluids but with thin, compliant films that can simultaneously serve as biointerfaces for sensing and/or actuation while in contact with the soft, curved, and moving surfaces of target organs. This paper introduces a solution to this materials challenge that combines (i) ultrathin, pristine layers of silicon dioxide (SiO2) thermally grown on device-grade silicon wafers, and (ii) processing schemes that allow integration of these materials onto flexible electronic platforms. Accelerated lifetime tests suggest robust barrier characteristics on timescales that approach 70 y, in layers that are sufficiently thin (less than 1 µm) to avoid significant compromises in mechanical flexibility or in electrical interface fidelity. Detailed studies of temperature- and thickness-dependent electrical and physical properties reveal the key characteristics. Molecular simulations highlight essential aspects of the chemistry that governs interactions between the SiO2 and surrounding water. Examples of use with passive and active components in high-performance flexible electronic devices suggest broad utility in advanced chronic implants.


Assuntos
Líquidos Corporais , Eletrônica Médica , Dióxido de Silício , Simulação por Computador , Eletricidade , Modelos Teóricos , Dióxido de Silício/química , Temperatura
12.
Proc Natl Acad Sci U S A ; 113(26): 7059-64, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27303045

RESUMO

Bacteria cells use osmoregulatory proteins as emergency valves to respond to changes in the osmotic pressure of their external environment. The existence of these emergency valves has been known since the 1960s, but they have never been used as the basis of a viability assay to tell dead bacteria cells apart from live ones. In this paper, we show that osmoregulation provides a much faster, label-free assessment of cell viability compared with traditional approaches that rely on cell multiplication (growth) to reach a detectable threshold. The cells are confined in an evaporating droplet that serves as a dynamic microenvironment. Evaporation-induced increase in ionic concentration is reflected in a proportional increase of the droplet's osmotic pressure, which in turn, stimulates the osmoregulatory response from the cells. By monitoring the time-varying electrical conductance of evaporating droplets, bacterial cells are identified within a few minutes compared with several hours in growth-based methods. To show the versatility of the proposed method, we show detection of WT and genetically modified nonhalotolerant cells (Salmonella typhimurium) and dead vs. live differentiation of nonhalotolerant (such as Escherichia coli DH5α) and halotolerant cells (such as Staphylococcus epidermidis). Unlike the growth-based techniques, the assay time of the proposed method is independent of cell concentration or the bacteria type. The proposed label-free approach paves the road toward realization of a new class of real time, array-formatted electrical sensors compatible with droplet microfluidics for laboratory on a chip applications.


Assuntos
Escherichia coli/química , Osmorregulação , Salmonella typhimurium/química , Staphylococcus epidermidis/química , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/fisiologia , Viabilidade Microbiana , Pressão Osmótica , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/fisiologia , Staphylococcus epidermidis/crescimento & desenvolvimento , Staphylococcus epidermidis/fisiologia
13.
Proc Natl Acad Sci U S A ; 112(36): 11193-8, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26290582

RESUMO

The bulk heterojunction (BHJ) organic photovoltaic (OPV) architecture has dominated the literature due to its ability to be implemented in devices with relatively high efficiency values. However, a simpler device architecture based on a single organic semiconductor (SS-OPV) offers several advantages: it obviates the need to control the highly system-dependent nanoscale BHJ morphology, and therefore, would allow the use of broader range of organic semiconductors. Unfortunately, the photocurrent in standard SS-OPV devices is typically very low, which generally is attributed to inefficient charge separation of the photogenerated excitons. Here we show that the short-circuit current density from SS-OPV devices can be enhanced significantly (∼100-fold) through the use of inverted device configurations, relative to a standard OPV device architecture. This result suggests that charge generation may not be the performance bottleneck in OPV device operation. Instead, poor charge collection, caused by defect-induced electric field screening, is most likely the primary performance bottleneck in regular-geometry SS-OPV cells. We justify this hypothesis by: (i) detailed numerical simulations, (ii) electrical characterization experiments of functional SS-OPV devices using multiple polymers as active layer materials, and (iii) impedance spectroscopy measurements. Furthermore, we show that the collection-limited photocurrent theory consistently interprets typical characteristics of regular SS-OPV devices. These insights should encourage the design and OPV implementation of high-purity, high-mobility polymers, and other soft materials that have shown promise in organic field-effect transistor applications, but have not performed well in BHJ OPV devices, wherein they adopt less-than-ideal nanostructures when blended with electron-accepting materials.

14.
Nano Lett ; 14(6): 3160-5, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24797732

RESUMO

Nanoelectromechnical system (NEMS) is seen as one of the most promising candidates for next generation extreme low power electronics that can operate as a versatile switch/memory/sensor/display element. One of the main challenges toward this goal lies in the fabrication difficulties of ultrascaled NEMS required for high density integrated circuits. It is generally understood that fabricating and operating a NEMS with an airgap below a few nanometer will be extremely challenging due to surface roughness, nonideal forces, tunneling, etc. Here, we show that by cascading a NEMS with a ferroelectric capacitor, operating in the negative capacitance regime, the effective airgap can be reduced by almost an order of magnitude, without the need to reduce the airgap physically. This would not only reduce the pull-in voltage to sub-1 V regime, but also would offer a set of characteristics which are difficult/impossible to achieve otherwise. For example, one can reduce/increase the classical travel range, flip the traditional stable-unstable regime of the electrode, get a negative pull-out voltage, and thus, center the hysteresis around zero volt. Moreover, one can also operate the combination as an effective ferroelectric memory with much reduced switching voltages. These characteristics promise dramatic saving in power for NEMS-based switching, memory, and other related applications.

15.
ACS Nano ; 6(7): 6150-64, 2012 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-22695179

RESUMO

Nanobiosensors based on silicon nanowire field effect transistors offer advantages of low cost, label-free detection, and potential for massive parallelization. As a result, these sensors have often been suggested as an attractive option for applications in point-of-care (POC) medical diagnostics. Unfortunately, a number of performance issues, such as gate leakage and current instability due to fluid contact, have prevented widespread adoption of the technology for routine use. High-k dielectrics, such as hafnium oxide (HfO(2)), have the known ability to address these challenges by passivating the exposed surfaces against destabilizing concerns of ion transport. With these fundamental stability issues addressed, a promising target for POC diagnostics and SiNWFETs has been small oligonucleotides, more specifically, microRNA (miRNA). MicroRNAs are small RNA oligonucleotides which bind to mRNAs, causing translational repression of proteins, gene silencing, and expressions are typically altered in several forms of cancer. In this paper, we describe a process for fabricating stable HfO(2) dielectric-based silicon nanowires for biosensing applications. Here we demonstrate sensing of single-stranded DNA analogues to their microRNA cousins using miR-10b and miR-21 as templates, both known to be upregulated in breast cancer. We characterize the effect of surface functionalization on device performance using the miR-10b DNA analogue as the target sequence and different molecular weight poly-l-lysine as the functionalization layer. By optimizing the surface functionalization and fabrication protocol, we were able to achieve <100 fM detection levels of the miR-10b DNA analogue, with a theoretical limit of detection of 1 fM. Moreover, the noncomplementary DNA target strand, based on miR-21, showed very little response, indicating a highly sensitive and highly selective biosensing platform.


Assuntos
Háfnio , Nanofios , Ácidos Nucleicos/análise , Óxidos , Silício , Sequência de Bases , Técnicas Biossensoriais/métodos , Neoplasias da Mama/genética , Técnicas Eletroquímicas , Feminino , Háfnio/química , Humanos , Limite de Detecção , MicroRNAs/análise , MicroRNAs/genética , Nanotecnologia , Nanofios/química , Nanofios/ultraestrutura , Ácidos Nucleicos/química , Ácidos Nucleicos/genética , Óxidos/química , Sistemas Automatizados de Assistência Junto ao Leito , Silício/química , Transistores Eletrônicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...