Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(7): 7692-7704, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38405485

RESUMO

A novel adsorbent designated as terpolymer hydrogel (gellan gum-co-acrylamide-co-methacrylic acid) was prepared by free radical polymerization of gellan gum (GG), methacrylic acid (MAA), and acrylamide (AAm) using N,N-methylene bis-acrylamide (MBA) as cross-linker and ammonium per sulfate (APS) as the initiator of the reaction. The synthesized gel was characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and thermogravimetric analysis (TGA) and was used for the adsorptive removal of methyl violet (MV) and Fuchsin Basic (FB) dyes from aqueous solution. The effect of temperature, contact time, pH, and concentration on them under the study adsorption process was evaluated. Freundlich isotherm and pseudo-second-order kinetic models were found to be best in fitting the isothermal and kinetics data. The water diffusion and % swelling of hydrogel were studied at various pH in distilled water and at neutral pH in tap water. The diffusion was found to be of Fickian type with a maximum swelling of 5132%. The maximum adsorption capacity was 233 mg/g against MV and 200 mg/g against FB dyes. The swelling and adsorption were pH dependent and increased with increase in pH. The enthalpy, Gibbs free energy, and entropy changes of adsorption for both the dyes indicated the adsorption process to be exothermic, feasible, and spontaneous. The hydrogel was successfully regenerated using acetone and distilled water for five cycles and still, its dye removal efficiency was 80% of its original value. The poly(GG-co-AAm-co-MAA) hydrogel successfully removed the selected dyes from water and could thus be used as an efficient alternative sorbent for cationic dye removal from aqueous solutions.

2.
Heliyon ; 10(4): e25836, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38375313

RESUMO

Most of the dyes used in various industries are non-biodegradable and carcinogenic in nature. Therefore, elimination of dyes from textile wastes is mandatory to safeguard the life of human, aquatic animals and aquatic plants. In this connection an effective and eco-friendly hydrogel was synthesized from acrylamide, cellulose, clay, and copper salt abbreviated as AMPS(PHE-Ce)/MC-Cu. The fabricated hydrogel was used as sorbent and catalyst for the adsorption and catalytic reduction of basic blue 3. SEM analysis showed granular texture with small holes or cracks which is basic criteria for an adsorbent surface. The results showed that the BET surface area and the Langmuir surface area were, respectively, 27.87 and 40.32 m2/g. The FTIR analysis confirmed the synthesis of hydrogel, as is evident from peaks at 3500, 3439, 2996, 2414, and 1650 cm-1, which indicated the presence of OH or NH, -C-O-C-, CH3, (C[bond, double bond]O), C-N bonds correspondingly. Thermal stability was confirmed by TGA analysis where weight loss in three stages has been observed. The presence of copper was confirmed through EDX (5.02%) indicating the incorporation of cupper nanoparticles in hydrogel surface. The high adsorption capability of 1590 mg/g as recorded for basic blue-3 dye indicates it to be an efficient adsorbent. The swelling behavior characterized by Fickian diffusion up to 7898% clearly indicated significant swelling. Pseudo 2nd-order kinetics and the Langmuir isotherm models were more fit in unfolding kinetics and isothermal data indicating chemisorption with monolayer sorption as evident from the high R2 values (0.999) of each model. Thermodynamics considerations indicated that the adsorption process is endothermic with a positive enthalpy value of 1371.32 Jmol-1. The positive entropy value of 19.70 J/mol.K signifies a higher degree of disorder at the solid-liquid interface. The findings provided a valuable insights into the hydrogel's capacity to adsorb cationic dyes and reduce them catalytically, pointing towards its potential applications in addressing environmental challenges.

3.
Heliyon ; 9(9): e19780, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809951

RESUMO

Textile effluent's treatment is highly desired due to the presence of hazardous, water-soluble and non-biodegradable dyes that not only have harmful effect on the environment but on living beings as well. Treatment of these pollutants by sorption through biosorbents is considered to be a best method of choice due to greener nature of the processes. In this connection hydrogel sorbents might be an intriguing option due to its straightforward application, great efficacy, easy synthesis, rapid turnaround, and potential of recycling. Herein, novel hydrogel was prepared using Gellan Gum and acrylic acid (GG-co-AAc) which were then characterized by instrumental techniques like UV/visible and FTIR spectroscopy, SEM, EDX and XRD. The anionic hydrogel's adsorption capacity, swelling behavior, and sorption potential were determined using Rhodamine-B as potential environmental pollutant. The hydrogel exhibited an impressive adsorption capacity of 1250 mg/g. Swelling experiments were performed in Milli-Q distilled water at different pH levels, reaching maximum swelling of 3230% after 23 h as determined through Fickian diffusion. At pH 7, the anionic hydrogel's sorption potential was thoroughly studied in the subsequent experiments. The adsorption process was found to follow the Langmuir isotherm, indicating a monolayer adsorption mechanism supported by higher R2 values compared to the Freundlich isotherm. Thermodynamic analysis revealed the exothermic nature of the adsorption process, with a negative enthalpy value of -11371 KJmol-1 and negative entropy value of -26.39 Jmol-1K-1, suggesting a less ordered system. These findings provide valuable insights into the adsorption characteristics and potential applications of the synthesized anionic hydrogel.

4.
Cureus ; 12(1): e6730, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-32015936

RESUMO

Background Graves' disease is the most common cause of thyrotoxicosis. It can be treated using three different modalities, which include anti-thyroid drugs (ATD), radioactive iodine (RAI), and near-total thyroidectomy. This cohort study aimed to assess the treatment modality preferred at King Abdulaziz Medical City (KAMC) and to compare the treatment options in relation to the prognosis of the disease. Methods A retrospective cohort study was conducted on a total of 100 patients with Graves' disease who were treated and followed up in the endocrine clinics at KAMC between January 2013 and December 2018. Data on age at diagnosis, duration of illness, treatment modality, and response to treatment were extracted from paper and electronic medical files and analyzed. Results A total of 100 patients with Graves' disease were included in this cohort study. The ratio of female:male was 2:1. The median age in years was 32 (16). They were treated with ATD (60%), RAI ablation (40%), and none were treated by surgery. The remission rate was 53.3% for patients treated with ATD and 95% for RAI ablation. Hypothyroidism occurred in 90% of the responders to RAI and in 12% that were treated with ATD. Most of the patients that relapsed underwent RAI as the second line of treatment. Their remission rate was 78.6%. Conclusion ATD was the treatment modality mostly used for Graves' disease in our center. It resulted in a remission rate of 53%, which is higher than reported in national studies. Although the rate of remission post RAI ablation was as high as 95%, most patients developed hypothyroidism.

5.
Biomed Res Int ; 2019: 5276841, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31080821

RESUMO

Magnetic carbon nanocomposite (MCN) was synthesized from waste biomass precursor, pineapple. The prepared adsorbent was characterized using different instrumental techniques and was used to remove levofloxacin (LEV) from effluents. The maximum sorption of LEV was observed at pH 7. Pseudo-2nd-order (PSO) kinetic was found to be the best model that fits well the adsorption kinetics data. For Langmuir adsorption isotherm, the R2 value was higher as compared with other isotherms. The Van't Hoff equation was used for thermodynamic parameters determinations. ΔS° (standard entropy) was positive and ΔG° (standard Gibb's free energy) was negative: -0.37, -1.81, and -3.73 kJmol-1 corresponding to 25, 40, and 60°C. The negative values of ΔG° at different temperatures stipulate that the adsorption of LEV was spontaneous in nature and adsorbent has a considerable affinity for LEV molecules. The MCN was then utilized in hybrid way by connecting with ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO) membranes in series and as a result enhanced permeate fluxes were observed. The percent retention of LEV molecules was lower with UF membrane and with NF it was 96%, while it was 100% with RO. For MCN/UF and MCN/NF systems, improvement in % retention was recorded.


Assuntos
Filtração/métodos , Levofloxacino/isolamento & purificação , Magnetismo/métodos , Nanocompostos/química , Adsorção , Carbono/química , Filtração/instrumentação , Concentração de Íons de Hidrogênio , Resíduos Industriais , Cinética , Levofloxacino/química , Membranas Artificiais , Peso Molecular , Termodinâmica , Ultrafiltração/instrumentação , Ultrafiltração/métodos , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...