Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 10(4): 1958-1973, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30888350

RESUMO

The snack product category is lacking palatable, high dietary fiber containing products. This study explored how the addition of native or fermented rye bran influences the texture and sensory properties of endosperm rye flour based extrudates. In addition, mastication and bolus properties (n = 26), and in vitro starch digestibility were assessed. Three high fiber extrudates based on endosperm rye flour (EF) were produced with addition of either 40% native rye bran (NBE) or 40% fermented rye bran (FBE), and with no added bran (EFE) to achieve two pairs of extrudates to compare. EFE and FBE had different composition but resembled each other regarding macrostructure and the second pair (NBE vs. FBE) had similar core composition but different structure due to bran fermentation. The fermentation of bran was performed using exopolysaccharide (EPS)-producing strain Weissella confusa, which led to 3% (3 g per 100 g bran; dry weight) in situ dextran production. The compositionally similar extrudates (NBE vs. FBE) varied in both structure and instrumental texture: FBE were less dense, less hard and crispier than NBE. The extrudates with different composition (EFE vs. FBE) varied regarding instrumental texture: FBE were less hard and crispier than EFE. There were also subtle structural differences FBE being somewhat denser than EFE. NBE and FBE differed regarding sensory texture while textures of EFE and FBE were perceived similar. Mastication properties of the different products did not exhibit remarkable differences. There was a large number of smaller particles in both NBE and FBE bolus samples. The fragile structure of FBE, and its lower bolus viscosity, led to high in vitro starch digestibility. The results demonstrate that the structural attributes of the extrudates, rather than the core composition, dictate the breakdown pattern during mastication and in vitro starch digestibility. The extrudates with similar composition may be digested at different rates depending on their structural attributes. Although FBE had higher in vitro starch digestibility, its high DF content, palatable texture and improved sensory properties were important determinants underlying eating quality and therefore it could be a promising product to snack food category.


Assuntos
Fibras na Dieta/análise , Fibras na Dieta/metabolismo , Secale/química , Amido/metabolismo , Adulto , Digestão , Feminino , Fermentação , Farinha/análise , Dureza , Humanos , Mastigação , Secale/metabolismo , Sementes/química , Sementes/metabolismo , Lanches , Paladar , Weissella/metabolismo , Adulto Jovem
2.
Food Res Int ; 96: 1-11, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28528088

RESUMO

Structural and textural properties as well as the dietary fibre content of solid cereal foams influence the oral breakdown of structure, bolus formation and digestibility. The aim of this study was to investigate how structural differences of solid cereal foams (puffs vs. flakes) affect in vivo chewing and in vitro starch digestion. Four extruded puffs and flakes were produced from endosperm rye flour by extrusion processing without or with 10% rye bran (RB) addition. Extruded puffs and flakes were masticated by fifteen healthy females and the process was monitored using electromyography. Extruded puffs were more porous than flakes (97% vs 35%). The two products were also significantly different (p<0.05) in their structural and textural properties such as expansion, hardness, density and crispiness. A negative correlation was observed between hardness and crispiness index (p<0.05, r=-0.950) and density and porosity (p<0.05, r=-0.964). Addition of 10% RB had a significant effect on structural, textural and mastication properties both for puffs and flakes. Mastication of puffs required less total work than flakes (204 vs. 456%) and they were degraded to smaller particles than flakes during mastication. Irrespectively of the considerable differences in structure, texture and oral disintegration process, no significant (p<0.05) differences were observed between puffs and flakes (86.4 vs. 85.1) in terms of starch hydrolysis index. RB addition increased the hydrolysis index of puffs and flakes to 89.7 and 94.5, respectively, which was probably attributable to the increased number of particles in the bolus.


Assuntos
Fibras na Dieta/metabolismo , Digestão , Grão Comestível/metabolismo , Endosperma/metabolismo , Manipulação de Alimentos/métodos , Mastigação , Secale/metabolismo , Amido/metabolismo , Adulto , Culinária , Grão Comestível/química , Endosperma/química , Feminino , Dureza , Humanos , Hidrólise , Porosidade , Secale/química , Amido/química , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...