Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Health Inf Sci Syst ; 12(1): 38, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39006830

RESUMO

Laryngeal cancer (LC) represents a substantial world health problem, with diminished survival rates attributed to late-stage diagnoses. Correct treatment for LC is complex, particularly in the final stages. This kind of cancer is a complex malignancy inside the head and neck region of patients. Recently, researchers serving medical consultants to recognize LC efficiently develop different analysis methods and tools. However, these existing tools and techniques have various problems regarding performance constraints, like lesser accuracy in detecting LC at the early stages, additional computational complexity, and colossal time utilization in patient screening. Deep learning (DL) approaches have been established that are effective in the recognition of LC. Therefore, this study develops an efficient LC Detection using the Chaotic Metaheuristics Integration with the DL (LCD-CMDL) technique. The LCD-CMDL technique mainly focuses on detecting and classifying LC utilizing throat region images. In the LCD-CMDL technique, the contrast enhancement process uses the CLAHE approach. For feature extraction, the LCD-CMDL technique applies the Squeeze-and-Excitation ResNet (SE-ResNet) model to learn the complex and intrinsic features from the image preprocessing. Moreover, the hyperparameter tuning of the SE-ResNet approach is performed using a chaotic adaptive sparrow search algorithm (CSSA). Finally, the extreme learning machine (ELM) model was applied to detect and classify the LC. The performance evaluation of the LCD-CMDL approach occurs utilizing a benchmark throat region image database. The experimental values implied the superior performance of the LCD-CMDL approach over recent state-of-the-art approaches.

2.
Cancers (Basel) ; 15(15)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37568800

RESUMO

Lung cancer is the main cause of cancer deaths all over the world. An important reason for these deaths was late analysis and worse prediction. With the accelerated improvement of deep learning (DL) approaches, DL can be effectively and widely executed for several real-world applications in healthcare systems, like medical image interpretation and disease analysis. Medical imaging devices can be vital in primary-stage lung tumor analysis and the observation of lung tumors from the treatment. Many medical imaging modalities like computed tomography (CT), chest X-ray (CXR), molecular imaging, magnetic resonance imaging (MRI), and positron emission tomography (PET) systems are widely analyzed for lung cancer detection. This article presents a new dung beetle optimization modified deep feature fusion model for lung cancer detection and classification (DBOMDFF-LCC) technique. The presented DBOMDFF-LCC technique mainly depends upon the feature fusion and hyperparameter tuning process. To accomplish this, the DBOMDFF-LCC technique uses a feature fusion process comprising three DL models, namely residual network (ResNet), densely connected network (DenseNet), and Inception-ResNet-v2. Furthermore, the DBO approach was employed for the optimum hyperparameter selection of three DL approaches. For lung cancer detection purposes, the DBOMDFF-LCC system utilizes a long short-term memory (LSTM) approach. The simulation result analysis of the DBOMDFF-LCC technique of the medical dataset is investigated using different evaluation metrics. The extensive comparative results highlighted the betterment of the DBOMDFF-LCC technique of lung cancer classification.

3.
Cancers (Basel) ; 15(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36900381

RESUMO

Cancer is a deadly disease caused by various biochemical abnormalities and genetic diseases. Colon and lung cancer have developed as two major causes of disability and death in human beings. The histopathological detection of these malignancies is a vital element in determining the optimal solution. Timely and initial diagnosis of the sickness on either front diminishes the possibility of death. Deep learning (DL) and machine learning (ML) methods are used to hasten such cancer recognition, allowing the research community to examine more patients in a much shorter period and at a less cost. This study introduces a marine predator's algorithm with deep learning as a lung and colon cancer classification (MPADL-LC3) technique. The presented MPADL-LC3 technique aims to properly discriminate different types of lung and colon cancer on histopathological images. To accomplish this, the MPADL-LC3 technique employs CLAHE-based contrast enhancement as a pre-processing step. In addition, the MPADL-LC3 technique applies MobileNet to derive feature vector generation. Meanwhile, the MPADL-LC3 technique employs MPA as a hyperparameter optimizer. Furthermore, deep belief networks (DBN) can be applied for lung and color classification. The simulation values of the MPADL-LC3 technique were examined on benchmark datasets. The comparison study highlighted the enhanced outcomes of the MPADL-LC3 system in terms of different measures.

4.
Biomedicines ; 10(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36359235

RESUMO

Recently, artificial intelligence (AI) including machine learning (ML) and deep learning (DL) models has been commonly employed for the automated disease diagnosis process. AI in biological and biomedical imaging is an emerging area and will be a future trend in the field. At the same time, biomedical images can be used for the classification of Rheumatoid arthritis (RA) diseases. RA is an autoimmune illness that affects the musculoskeletal system causing systemic, inflammatory and chronic effects. The disease frequently becomes progressive and decreases physical function, causing articular damage, suffering, and fatigue. After a time, RA causes harm to the cartilage of the joints and bones, weakens the tendons and joints, and finally causes joint destruction. Sensors (thermal infrared camera sensor, accelerometers and wearable sensors) are more commonly employed to collect data for RA. This study develops an Automated Rheumatoid Arthritis Classification using an Arithmetic Optimization Algorithm with Deep Learning (ARAC-AOADL) model. The goal of the presented ARAC-AOADL technique lies in the classification of health disorders depending upon RA and orthopaedics. Primarily, the presented ARAC-AOADL technique pre-processes the input images by median filtering (MF) technique. Then, the ARAC-AOADL technique uses AOA with an enhanced capsule network (ECN) model to produce feature vectors. For RA classification, the ARAC-AOADL technique uses a multi-kernel extreme learning machine (MKELM) model. The experimental result analysis of the ARAC-AOADL technique on a benchmark dataset reported a maximum accuracy of 98.57%. Therefore, the ARAC-AOADL technique can be employed for accurate and timely RA classification.

5.
Comput Intell Neurosci ; 2022: 1698137, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35607459

RESUMO

Recently, bioinformatics and computational biology-enabled applications such as gene expression analysis, cellular restoration, medical image processing, protein structure examination, and medical data classification utilize fuzzy systems in offering effective solutions and decisions. The latest developments of fuzzy systems with artificial intelligence techniques enable to design the effective microarray gene expression classification models. In this aspect, this study introduces a novel feature subset selection with optimal adaptive neuro-fuzzy inference system (FSS-OANFIS) for gene expression classification. The major aim of the FSS-OANFIS model is to detect and classify the gene expression data. To accomplish this, the FSS-OANFIS model designs an improved grey wolf optimizer-based feature selection (IGWO-FS) model to derive an optimal subset of features. Besides, the OANFIS model is employed for gene classification and the parameter tuning of the ANFIS model is adjusted by the use of coyote optimization algorithm (COA). The application of IGWO-FS and COA techniques helps in accomplishing enhanced microarray gene expression classification outcomes. The experimental validation of the FSS-OANFIS model has been performed using Leukemia, Prostate, DLBCL Stanford, and Colon Cancer datasets. The proposed FSS-OANFIS model has resulted in a maximum classification accuracy of 89.47%.


Assuntos
Inteligência Artificial , Lógica Fuzzy , Animais , Masculino , Algoritmos , Biologia Computacional , Expressão Gênica
6.
Bioinformation ; 15(1): 36-39, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31359997

RESUMO

Polyhydroxyalkanoates (PHA) are polyesters of various hydroxyl alkanoates that are synthesized by many gram-positive and gramnegative bacteria from about 75 different genera. PHA genes database is a repository of genes and its genomic information related to PHA.It contains data on the genomic characterization of intermediates of PHA. These include CAB genes, responsible for biodegradable plastic synthesis. The genomic database provides data on PHA genes from archaeal, bacterial and eukaryotic genomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...