Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Cent Sci ; 10(6): 1179-1190, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38947210

RESUMO

Protein-based therapeutics comprise a rapidly growing subset of pharmaceuticals, but enabling their delivery into cells for intracellular applications has been a longstanding challenge. To overcome the delivery barrier, we explored a reversible, bioconjugation-based approach to modify the surface charge of protein cargos with an anionic "cloak" to facilitate electrostatic complexation and delivery with lipid nanoparticle (LNP) formulations. We demonstrate that the conjugation of lysine-reactive sulfonated compounds can allow for the delivery of various protein cargos using FDA-approved LNP formulations of the ionizable cationic lipid DLin-MC3-DMA (MC3). We apply this strategy to functionally deliver RNase A for cancer cell killing as well as a full-length antibody to inhibit oncogenic ß-catenin signaling. Further, we show that LNPs encapsulating cloaked fluorescent proteins distribute to major organs in mice following systemic administration. Overall, our results point toward a generalizable platform that can be employed for intracellular delivery of a wide range of protein cargos.

2.
J Am Chem Soc ; 140(26): 8060-8063, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29901996

RESUMO

Label-free assays, and particularly those based on the combination of mass spectroscopy with surface chemistries, enable high-throughput experiments of a broad range of reactions. However, these methods can still require the incorporation of functional groups that allow immobilization of reactants and products to surfaces prior to analysis. In this paper, we report a traceless method for attaching molecules to a self-assembled monolayer for matrix-assisted laser desorption and ionization (SAMDI) mass spectrometry. This method uses monolayers that are functionalized with a 3-trifluoromethyl-3-phenyl-diazirine group that liberates nitrogen when irradiated and gives a carbene that inserts into a wide range of bonds to covalently immobilize molecules. Analysis of the monolayer with SAMDI then reveals peaks for each of the adducts formed from molecules in the sample. This method is applied to characterize a P450 drug metabolizing enzyme and to monitor a Suzuki-Miyaura coupling chemical reaction and is important because modification of the substrates with a functional group would alter their activities. This method will be important for high-throughput experiments in many areas, including reaction discovery and optimization.


Assuntos
Azirinas/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Ensaios de Triagem em Larga Escala , Azirinas/química , Sistema Enzimático do Citocromo P-450/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Estrutura Molecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Propriedades de Superfície
3.
Sci Rep ; 8(1): 286, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321505

RESUMO

The selective detection of citrate anions is essential for various biological functions in living systems. A quantitative assessment of citrate is required for the diagnosis of various diseases in the human body; however, it is extremely challenging to develop efficient fluorescence and color-detecting molecular probes for sensing citrate in water. Herein, we report a macrocycle-based dinuclear foldamer (1) assembled with eosin Y (EY) that has been studied for anion binding by fluorescence and colorimetric techniques in water at neutral pH. Results from the fluorescence titrations reveal that the 1·EY ensemble strongly binds citrate anions, showing remarkable selectivity over a wide range of inorganic and carboxylate anions. The addition of citrate anions to the 1·EY adduct led to a large fluorescence enhancement, displaying a detectable color change under both visible and UV light in water up to 2 µmol. The biocompatibility of 1·EY as an intracellular carrier in a biological system was evaluated on primary human foreskin fibroblast (HF) cells, showing an excellent cell viability. The strong binding properties of the ensemble allow it to be used as a highly sensitive, detective probe for biologically relevant citrate anions in various applications.


Assuntos
Técnicas Biossensoriais , Ácido Cítrico/análise , Ácido Cítrico/química , Colorimetria , Água/análise , Água/química , Ânions , Colorimetria/métodos , Amarelo de Eosina-(YS)/análise , Amarelo de Eosina-(YS)/química , Amarelo de Eosina-(YS)/toxicidade , Fibroblastos , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Espectrometria de Fluorescência
4.
ACS Omega ; 2(11): 7730-7738, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30023562

RESUMO

According to the World Health Organization, more than two billion people in our world use drinking water sources which are not free from pathogens and heavy metal contamination. Unsafe drinking water is responsible for the death of several millions in the 21st century. To find facile and cost-effective routes for developing multifunctional materials, which has the capability to resolve many of the challenges associated with drinking water problem, here, we report the novel design of multifunctional fluorescence-magnetic biochar with the capability for highly efficient separation, identification, and removal of pathogenic superbugs and toxic metals from environmental water samples. Details of synthesis and characterization of multifunctional biochar that exhibits very good magnetic properties and emits bright blue light owing to the quantum confinement effect are reported. In our design, biochar, a carbon-rich low-cost byproduct of naturally abundant biomass, which exhibits heterogeneous surface chemistry and strong binding affinity via oxygen-containing group on the surface, has been used to capture pathogens and toxic metals. Biochar dots (BCDs) of an average of 4 nm size with very bright photoluminescence have been developed for the identification of pathogens and toxic metals. In the current design, magnetic nanoparticles have been incorporated with BCDs which allow pathogens and toxic metals to be completely removed from water after separation by an external magnetic field. Reported results show that owing to the formation of strong complex between multifunctional biochar and cobalt(II), multifunctional biochar can be used for the selective capture and removal of Co(II) from environmental samples. Experimental data demonstrate that multifunctional biochar can be used for the highly efficient removal of methicillin-resistant Staphylococcus aureus (MRSA) from environmental samples. Reported results also show that melittin, an antimicrobial peptide-attached multifunctional biochar, has the capability to completely disinfect MRSA superbugs after magnetic separation. A possible mechanism for the selective separation of Co(II), as well as separation and killing of MRSA, has been discussed.

5.
RSC Adv ; 4(97): 54263-54267, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-28217299

RESUMO

A novel dinuclear copper chemosensor selectively binds cyanide over a wide range of inorganic anions, enabling it to detect cyanide in water up to 0.02 ppm which is 10 times lower than the EPA standard for drinking water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...