Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photodiagnosis Photodyn Ther ; 46: 104034, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423234

RESUMO

Photodynamic therapy (PDT), an approach to cancer treatment, relies fundamentally on two key elements: a light source and a photosensitizing agent. A primary challenge in PDT is the efficient delivery of photosensitizers to the target tissue, hindered by the body's reticuloendothelial system (RES). Silica nanoparticles (SiNPs), known for their unique properties, emerge as ideal carriers in this context. In this study, SiNPs are utilized to encapsulate Temoporfin, a photosensitizer, aiming to enhance its delivery and reduce toxicity, particularly for treating MCF-7 cancer cells in vitro. The synthesized SiNPs were meticulously characterized by their size and shape using Transmission Electron Microscopy (TEM). The study also involved evaluating the cytotoxicity of both encapsulated and naked Temoporfin across various concentrations. The objective was to determine the ideal concentration and exposure duration using red laser light (intensity approximately 110 mW/cm2) to effectively eradicate MCF-7 cells. The findings revealed that Temoporfin, when encapsulated in SiNPs, demonstrated significantly greater effectiveness compared to its naked form, with notable improvements in concentration efficiency (50 %) and exposure time efficiency (76.6 %). This research not only confirms the superior effectiveness of encapsulated Temoporfin in eliminating cancer cells but also highlights the potential of SiNPs as an efficient drug delivery system in photodynamic therapy. This sets the groundwork for more advanced strategies in cancer treatment.


Assuntos
Neoplasias da Mama , Mesoporfirinas , Nanopartículas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Dióxido de Silício , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Dióxido de Silício/química , Humanos , Mesoporfirinas/farmacologia , Células MCF-7 , Nanopartículas/química , Neoplasias da Mama/tratamento farmacológico , Feminino , Sobrevivência Celular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...