Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Macro Lett ; : 201-206, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38261790

RESUMO

Herein we demonstrate that polyethylene-like bioderived, biodegradable, and fully recyclable unbranched aliphatic polyesters, such as PE-2,18, develop hexagonal crystal structures upon quenching from the melt to temperatures <∼50 °C and orthorhombic-like packing at higher quenching temperatures or after isothermal crystallization. Both crystal types are layered. While all-trans CH2 packing characterizes the structure of the orthorhombic-like form, there is significant conformational disorder in the staggered long CH2 sequences of the hexagonal crystals. On heating, the hexagonal crystals transform to the orthorhombic type at ∼60 °C via melt recrystallization, but no change is apparent during heating samples with the orthorhombic form up to the melting point (∼95 °C). The hexagonal structure is of interest not only because it develops under very rapid quenching from the melt but also because under uniaxial tensile deformation it undergoes a stretch-induced transformation to the orthorhombic structure. Compared to deformation of orthorhombic specimens that maintain the same crystal type, such transformation results in larger strains and enhanced strain hardening, thus representing a desired toughening mechanism for this type of polyethylene-like materials.

2.
Polymers (Basel) ; 13(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34067999

RESUMO

In this paper we extend the study of polymorphism and crystallization kinetics of aliphatic polyacetals to include shorter (PA-6) and longer (PA-26) methylene lengths in a series of even long-spaced systems. On a deep quenching to 0 °C, the longest even polyacetals, PA-18 and PA-26, develop mesomorphic-like disordered structures which, on heating, transform progressively to hexagonal, Form I, and Form II crystallites. Shorter polyacetals, such as PA-6 and PA-12 cannot bypass the formation of Form I. In these systems a mixture of this form and disordered structures develops even under fast deep quenching. A prediction from melting points that Form II will not develop in polyacetals with eight or fewer methylene groups between consecutive acetals was further corroborated with data for PA-6. The temperature coefficient of the overall crystallization rate of the two highest temperature polymorphs, Form I and Form II, was analyzed from the differential scanning calorimetry (DSC) peak crystallization times. The crystallization rate of Form II shows a deep inversion at temperatures approaching the polymorphic transition region from above. The new data on PA-26 confirm that at the minimum rate the heat of fusion is so low that crystallization becomes basically extinguished. The rate inversion and dramatic drop in the heat of fusion irrespective of crystallization time are associated with a competition in nucleation between Forms I and II. The latter is due to large differences in nucleation barriers between these two phases. As PA-6 does not develop Form II, the rate data of this polyacetal display a continuous temperature gradient. The data of the extended polyacetal series demonstrate the important role of methylene sequence length on polymorphism and crystallization kinetics.

3.
J Phys Chem B ; 121(43): 10166-10179, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29016133

RESUMO

Polyethylenes with halogens placed on each and every 21st, 15th, or ninth backbone carbon display crystallization patterns enabled by the size of the halogen and by changing crystallization kinetics. The different structures have been identified from X-ray patterns combined with a detailed analysis of the infrared spectra of series containing F, Cl, or Br atoms that were either fast or isothermally crystallized from the melt. Under both crystallization modes, all specimens develop layered crystallites that accommodate 5-9 repeating units along the chain's axis. The size of the halogen and intermolecular staggering to maximize packing symmetry are responsible for striking structural differences observed between the series and between the two modes of crystallization. While the small size of the F atom causes a small perturbation to the crystal lattice and the orthorhombic structure is maintained for all members of the series either fast or isothermally crystallized, each Cl or Br-containing system presents dimorphism. Under fast crystallization, Cl and Br containing samples adopt the all-trans conformation (planar Form I), while in slowly crystallized samples gauche conformers set for bonds of the backbone carbons adjacent to the carbon with the halogen due to a close intermolecular staggering of halogens (herringbone Form II). In both forms the methylene sequence between halogens maintains the all-trans conformation. The structural details are extracted from the analysis of the C-halogen stretching region of the IR spectra, and from adherence to the n-alkane behavior of CH2 rocking, CH2 wagging, and C-C stretching progression modes.

4.
Nat Commun ; 4: 2435, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24022336

RESUMO

Understanding the compatibility between spider silk and conducting materials is essential to advance the use of spider silk in electronic applications. Spider silk is tough, but becomes soft when exposed to water. Here we report a strong affinity of amine-functionalised multi-walled carbon nanotubes for spider silk, with coating assisted by a water and mechanical shear method. The nanotubes adhere uniformly and bond to the silk fibre surface to produce tough, custom-shaped, flexible and electrically conducting fibres after drying and contraction. The conductivity of coated silk fibres is reversibly sensitive to strain and humidity, leading to proof-of-concept sensor and actuator demonstrations.


Assuntos
Nanotubos de Carbono/química , Seda/química , Aranhas/química , Alicerces Teciduais/química , Animais , Condutividade Elétrica , Eletrodos , Nanotubos de Carbono/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Estresse Mecânico , Temperatura , Resistência à Tração , Água/química
5.
J Pept Sci ; 19(8): 477-84, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23801546

RESUMO

Solid state NMR measurements on selectively (13) C-labeled RADA16-I peptide (COCH3 -RADARADARADARADA-NH2 ) were used to obtain new molecular level information on the conversion of α-helices to ß-sheets through self-assembly in the solid state with increasing temperature. Isotopic labeling at the A4 Cß site enabled rapid detection of (13) C NMR signals. Heating to 344-363 K with simultaneous NMR detection allowed production of samples with systematic variation of α-helix and ß-strand content. These samples were then probed at room temperature for intermolecular (13) C-(13) C nuclear dipolar couplings with the PITHIRDS-CT NMR experiment. The structural transition was also characterized by Fourier transform infrared spectroscopy and wide angle X-ray diffraction. Independence of PITHIRDS-CT decay shapes on overall α-helical and ß-strand content infers that ß-strands are not observed without association with ß-sheets, indicating that ß-sheets are formed at elevated temperatures on a timescale that is fast relative to the NMR experiment. PITHIRDS-CT NMR data were compared with results of similar measurements on RADA16-I nanofibers produced by self-assembly in aqueous salt solution. We report that ß-sheets formed through self-assembly in the solid state have a structure that differs from those formed through self-assembly in the solution state. Specifically, solid state RADA16-I self-assembly produces in-register parallel ß-sheets, whereas nanofibers are composed of stacked parallel ß-sheets with registry shifts between adjacent ß-strands in each ß-sheet. These results provide evidence for environment-dependent self-assembly mechanisms for RADA16-I ß-sheets as well as new constraints on solid state self-assembled structures, which must be avoided to maximize solution solubility and nanofiber yields.


Assuntos
Peptídeos/química , Peptídeos beta-Amiloides/química , Humanos , Espectroscopia de Ressonância Magnética/normas , Nanofibras/química , Fragmentos de Peptídeos/química , Redobramento de Proteína , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Padrões de Referência , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
6.
Biomacromolecules ; 13(6): 1794-804, 2012 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-22559149

RESUMO

We report that synthetic RADA16-I peptide transforms to ß-strand secondary structure and develops intermolecular organization into ß-sheets when stored in the solid state at room temperature. Secondary structural changes were probed using solid state nuclear magnetic resonance spectroscopy (ssNMR) and Fourier transform infrared spectroscopy (FTIR). Intermolecular organization was analyzed via wide-angle X-ray diffraction (WAXD). Observed changes in molecular structure and organization occurred on the time scale of weeks during sample storage at room temperature. We observed structural changes on faster time scales by heating samples above room temperature or by addition of water. Analysis of hydration effects indicates that water can enhance the ability of the peptide to convert to ß-strand secondary structure and assemble into ß-sheets. However, temperature dependent FTIR and time dependent WAXD data indicate that bound water may hinder the assembly of ß-strands into ß-sheets. We suggest that secondary structural transformation and intermolecular organization together produce a water-insoluble state. These results reveal insights into the role of water in self-assembly of polypeptides with hydrophilic side chains, and have implications on future optimization of RADA16-I nanofiber production.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Peptídeos/síntese química , Peptídeos/química , Estrutura Secundária de Proteína , Temperatura
7.
Sci Technol Adv Mater ; 12(5): 055002, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27877440

RESUMO

This work explores functional, fundamental and applied aspects of naturally harvested spider silk fibers. Natural silk is a protein polymer where different amino acids control the physical properties of fibroin bundles, producing, for example, combinations of ß-sheet (crystalline) and amorphous (helical) structural regions. This complexity presents opportunities for functional modification to obtain new types of material properties. Electrical conductivity is the starting point of this investigation, where the insulating nature of neat silk under ambient conditions is described first. Modification of the conductivity by humidity, exposure to polar solvents, iodine doping, pyrolization and deposition of a thin metallic film are explored next. The conductivity increases exponentially with relative humidity and/or solvent, whereas only an incremental increase occurs after iodine doping. In contrast, iodine doping, optimal at 70 °C, has a strong effect on the morphology of silk bundles (increasing their size), on the process of pyrolization (suppressing mass loss rates) and on the resulting carbonized fiber structure (that becomes more robust against bending and strain). The effects of iodine doping and other functional parameters (vacuum and thin film coating) motivated an investigation with magic angle spinning nuclear magnetic resonance (MAS-NMR) to monitor doping-induced changes in the amino acid-protein backbone signature. MAS-NMR revealed a moderate effect of iodine on the helical and ß-sheet structures, and a lesser effect of gold sputtering. The effects of iodine doping were further probed by Fourier transform infrared (FTIR) spectroscopy, revealing a partial transformation of ß-sheet-to-amorphous constituency. A model is proposed, based on the findings from the MAS-NMR and FTIR, which involves iodine-induced changes in the silk fibroin bundle environment that can account for the altered physical properties. Finally, proof-of-concept applications of functionalized spider silk are presented for thermoelectric (Seebeck) effects and incandescence in iodine-doped pyrolized silk fibers, and metallic conductivity and flexibility of micron-sized gold-sputtered silk fibers. In the latter case, we demonstrate the application of gold-sputtered neat spider silk to make four-terminal, flexible, ohmic contacts to organic superconductor samples.

8.
Anal Bioanal Chem ; 399(4): 1547-56, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21046082

RESUMO

A new separation principle was recently introduced into the analytical characterization of polyolefins by researchers from the German Institute for Polymers in Darmstadt. It was demonstrated that polyolefins can be selectively separated via high-performance liquid chromatography on the basis of their adsorption/desorption behaviours at temperatures as high as 160 °C. A Hypercarb® column packed with porous graphite gave the best results. The mobile phase consisted of a mixture of 1-decanol and 1,2,4-trichlorobenzene. In this work, the same chromatographic system is applied to the separation of ethylene/alkene and ethylene/norbornene copolymers. It was found that the elution volumes of the samples correlate linearly with the average chemical composition of samples. The elution volume is indirectly proportional to the concentration of branches in the ethylene/alkene copolymer. Branching shortens the length of continuous methylene sequences of the polymer backbone, thus decreasing the probability of orientation of a methylene sequence in a flat conformation on the graphite surface, which enables the most intensive van der Waals interactions between the methylene backbone and the carbon surface. An opposite trend in the elution order has been found for ethylene/norbornene copolymers. The elution volume of the ethylene/norbornene copolymers increased with the concentration of norbornene. It indicates pronounced attractive interactions between graphite and the cyclic comonomer.


Assuntos
Polienos/isolamento & purificação , Temperatura , Adsorção , Cromatografia Líquida de Alta Pressão , Grafite/química , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...