Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 978: 176795, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950836

RESUMO

With a global towering prevalence of index acute myocardial infarction (nonrecurrent MI, NR-MI), a high incidence of recurrent MI (R-MI) has emerged in recent decades. Despite the extensive occurrence, the promising predictors of R-MI have been elusive within the cohort of survivors. This study investigates and validates the involvement of distinct gene expressions in R-MI and NR-MI. Bioinformatics tools were used to identify DEGs from the GEO dataset, functional annotation, pathway enrichment analysis, and the PPI network analysis to find hub genes. The validation of proposed genes was conceded by qRT-PCR and Western Blot analysis in experimentally induced NR-MI and R-MI models on a temporal basis. The temporal findings based on RT-PCR consequences reveal a significant and constant upregulation of the UBE2N in the NR-MI model out of the proposed three DEGs (UBE2N, UBB, and TMEM189), while no expression was reported in the R-MI model. Additionally, the proteomics study proposed five DEGs (IL2RB, NKG7, GZMH, CXCR6, and GZMK) for the R-MI model since IL2RB was spotted for significant and persistent downregulation with different time points. Further, Western Blot analysis validated these target genes' expressions temporally. I/R-induced NR-MI and R-MI models were confirmed by the biochemical parameters (CKMB, LDH, cTnI, serum nitrite/nitrate concentration, and inflammatory cytokines) and histological assessments of myocardial tissue. These results underscore the importance of understanding genetic mechanisms underlying MI and highlight the potential of UBE2N and IL2RB as biomarkers for non-recurrent and recurrent MI, respectively.

2.
Ren Fail ; 46(2): 2378212, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39011587

RESUMO

PURPOSE: The present study investigated the nephron-testicular protective effects of sesamin against cisplatin (CP)-induced acute renal and testicular injuries. METHODS: Thirty-two male Wistar rats were allocated to receive carboxymethylcellulose (0.5%, as sesamin vehicle), CP (a single i.p. 5 mg/kg dose), CP plus sesamin at 10 or 20 mg/kg orally for 10 days. RESULTS: Data analysis showed significant increases in serum urea, creatinine, interleukin (IL)-1, IL-6, and tumor necrosis factor-α (TNF-α), as well as renal and testicular tissue malondialdehyde and nitric-oxide concentrations in CP-intoxicated rats in comparison to control animals. On the contrary, rats treated with CP only exhibited significantly lower (p < .05) serum testosterone, tissue glutathione, and activities of endogenous antioxidant enzymes compared to control rats. Histopathologically examining CP-intoxicated rats' tissues using H&E and PAS stains showed atrophied glomeruli, interstitial inflammatory cells, atypic tubular epithelium with focal apoptosis, and reduced mucopolysaccharide content. Further, immunohistochemical staining of the same group revealed an increase in p53 and cyclooxygenase-II (Cox-II) expression in renal and testicular tissues. Treatment with sesamin alleviated almost all the changes mentioned above in a dose-dependent manner, with the 20 mg/kg dose restoring several parameters' concentrations to normal ranges. CONCLUSIONS: In brief, sesamin could protect the kidneys and testes against CP toxicity through its antioxidant, anti-inflammatory, and anti-apoptotic effects.


Assuntos
Anti-Inflamatórios , Antioxidantes , Apoptose , Cisplatino , Dioxóis , Rim , Lignanas , Ratos Wistar , Testículo , Animais , Masculino , Lignanas/farmacologia , Lignanas/uso terapêutico , Cisplatino/toxicidade , Cisplatino/efeitos adversos , Ratos , Dioxóis/farmacologia , Antioxidantes/farmacologia , Testículo/efeitos dos fármacos , Testículo/patologia , Testículo/metabolismo , Apoptose/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Anti-Inflamatórios/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/patologia , Injúria Renal Aguda/metabolismo , Antineoplásicos/toxicidade
3.
Cancer Cell Int ; 24(1): 219, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926695

RESUMO

Lung cancer (LC) ranks second most prevalent cancer in females after breast cancer and second in males after prostate cancer. Based on the GLOBOCAN 2020 report, India represented 5.9% of LC cases and 8.1% of deaths caused by the disease. Several clinical studies have shown that LC occurs because of biological and morphological abnormalities and the involvement of altered level of antioxidants, cytokines, and apoptotic markers. In the present study, we explored the antiproliferative activity of indeno[1,2-d]thiazolo[3,2-a]pyrimidine analogues against LC using in-vitro, in-silico, and in-vivo models. In-vitro screening against A549 cells revealed compounds 9B (8-methoxy-5-(3,4,5-trimethoxyphenyl)-5,6-dihydroindeno[1,2-d]thiazolo[3,2-a]pyrimidine) and 12B (5-(4-chlorophenyl)-5,6-dihydroindeno[1,2-d]thiazolo[3,2-a]pyrimidine) as potential pyrimidine analogues against LC. Compounds 9B and 12B were docked with different molecular targets IL-6, Cyt-C, Caspase9, and Caspase3 using AutoDock Vina 4.1 to evaluate the binding affinity. Subsequently, in-vivo studies were conducted in albino Wistar rats through ethyl-carbamate (EC)- induced LC. 9B and 12B imparted significant effects on physiological (weight variation), and biochemical (anti-oxidant [TBAR's, SOD, ProC, and GSH), lipid (TC, TG, LDL, VLDL, and HDL)], and cytokine (IL-2, IL-6, IL-10, and IL-1ß) markers in EC-induced LC in albino Wistar rats. Morphological examination (SEM and H&E) and western blotting (IL-6, STAT3, Cyt-C, BAX, Bcl-2, Caspase3, and caspase9) showed that compounds 9B and 12B had antiproliferative effects. Accordingly, from the in-vitro, in-silico, and in-vivo experimental findings, we concluded that 9B and 12B have significant antiproliferative potential and are potential candidates for further evaluation to meet the requirements of investigation of new drug application.

4.
Biomed Pharmacother ; 176: 116860, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38861855

RESUMO

Isorhamnetin (C16H12O7), a 3'-O-methylated derivative of quercetin from the class of flavonoids, is predominantly present in the leaves and fruits of several plants, many of which have traditionally been employed as remedies due to its diverse therapeutic activities. The objective of this in-depth analysis is to concentrate on Isorhamnetin by addressing its molecular insights as an effective anticancer compound and its synergistic activity with other anticancer drugs. The main contributors to Isorhamnetin's anti-malignant activities at the molecular level have been identified as alterations of a variety of signal transduction processes and transcriptional agents. These include ROS-mediated cell cycle arrest and apoptosis, inhibition of mTOR and P13K pathway, suppression of MEK1, PI3K, NF-κB, and Akt/ERK pathways, and inhibition of Hypoxia Inducible Factor (HIF)-1α expression. A significant number of in vitro and in vivo research studies have confirmed that it destroys cancerous cells by arresting cell cycle at the G2/M phase and S-phase, down-regulating COX-2 protein expression, PI3K, Akt, mTOR, MEK1, ERKs, and PI3K signaling pathways, and up-regulating apoptosis-induced genes (Casp3, Casp9, and Apaf1), Bax, Caspase-3, P53 gene expression and mitochondrial-dependent apoptosis pathway. Its ability to suppress malignant cells, evidence of synergistic effects, and design of drugs based on nanomedicine are also well supported to treat cancer patients effectively. Together, our findings establish a crucial foundation for understanding Isorhamnetin's underlying anti-cancer mechanism in cancer cells and reinforce the case for the requirement to assess more exact molecular signaling pathways relating to specific cancer and in vivo anti-cancer activities.


Assuntos
Neoplasias , Quercetina , Humanos , Quercetina/farmacologia , Quercetina/análogos & derivados , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Animais , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos
5.
Int Immunopharmacol ; 137: 112496, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38901240

RESUMO

Lung cancer (LC) is the most common cancer in males. As per GLOBOCAN 2020, 8.1 % of deaths and 5.9 % of cases of LC were reported in India. Our laboratory has previously reported the significant anticancer potential of 5H-benzo[h]thiazolo[2,3-b]quinazoline analogues. In this study, we have explored the anticancer potential of 7A {4-(6,7-dihydro-5H-benzo[h]thiazolo[2,3-b]quinazolin-7-yl)phenol} and 9A {7-(4-chlorophenyl)-9-methyl-6,7-dihydro-5H-benzo[h]thiazolo[2,3-b]quinazoline}by using in-vitro and in-vivo models of LC. In this study, we investigated the antiproliferative potential of quinazoline analogues using A549 cell line to identify the best compound of the series. The in-vitro and molecular docking studies revealed 7A and 9A compounds as potential analogues. We also performed acute toxicity study to determine the dose. After that, in-vivo studies using urethane-induced LC in male albino Wistar rats carried out further physiological, biochemical, and morphological evaluation (SEM and H&E) of the lung tissue. We have also evaluated the antioxidant level, inflammatory, and apoptotic marker expressions. 7A and 9A did not demonstrate any signs of acute toxicity. Animals treated with urethane showed a significant upregulation of oxidative stress. However, treatment with 7A and 9A restored antioxidant markers near-normal levels. SEM and H&E staining of the lung tissue demonstrated recovered architecture after treatment with 7A and 9A. Both analogues significantly restore inflammatory markers to normal level and upregulate the intrinsic apoptosis protein expression in the lung tissue. These experimental findings demonstrated the antiproliferative potential of the synthetic analogues 7A and 9A, potentially due to their anti-inflammatory and apoptotic properties.


Assuntos
Anti-Inflamatórios , Antineoplásicos , Apoptose , Proliferação de Células , Neoplasias Pulmonares , Simulação de Acoplamento Molecular , Quinazolinas , Animais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/química , Células A549 , Quinazolinas/farmacologia , Quinazolinas/química , Quinazolinas/uso terapêutico , Masculino , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Ratos Wistar , Ratos
6.
J Biol Chem ; 298(10): 102395, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988642

RESUMO

The vacuolar H+-ATPase (V-ATPase) is an ATP-dependent proton pump that governs the pH of various intracellular compartments and also functions at the plasma membrane in certain cell types, including cancer cells. Membrane targeting of the V-ATPase is controlled by isoforms of subunit a, and we have previously shown that isoforms a3 and a4 are important for the migration and invasion of several breast cancer cell lines in vitro. Using CRISPR-mediated genome editing to selectively disrupt each of the four a subunit isoforms, we also recently showed that a4 is critical to plasma membrane V-ATPase localization, as well as in vitro migration and invasion of 4T1-12B murine breast cancer cells. We now report that a4 is important for the growth of 4T1-12B tumors in vivo. We found that BALB/c mice bearing a4-/- 4T1-12B allografts had significantly smaller tumors than mice in the control group. In addition, we determined that a4-/- allografts showed dramatically reduced metastases to the lung and reduced luminescence intensity of metastases to bone relative to the control group. Taken together, these results suggest that the a4 isoform of the V-ATPase represents a novel potential therapeutic target to limit breast cancer growth and metastasis.


Assuntos
Neoplasias da Mama , ATPases Vacuolares Próton-Translocadoras , Animais , Camundongos , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Isoformas de Proteínas/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Metástase Neoplásica , Camundongos Endogâmicos BALB C , Movimento Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...