Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurosciences (Riyadh) ; 25(2): 134-143, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32351251

RESUMO

OBJECTIVE: To review the dynamics of neuroscience research in the Kingdom of Saudi Arabia (KSA) from 2013-2018. METHODS: Subject category of Neuroscience was selected in the SciVal feature of Scopus database, which includes all relevant categories of the field limiting it to Saudi Arabia. RESULTS: Saudi Arabia is ranked 39th in publishing neuroscientific research worldwide. The number of yearly published articles has increased from 123 to 332 during the time period between 2013 and 2018. King Saud University & King Abdul Aziz University & their corresponding regions namely Western and Central regions are the major contributors to publications. Neuroscientists working in Saudi Arabia have collaboration with scientists from all over the world. The top 10 preferred journals are all international. In subcategories of neuroscience, developmental neuroscience seems the one that needs attention. CONCLUSION: Neuroscience research is on the rise in KSA. Older and well-established institutions like King Saud University & King Abdul Aziz University have taken lead in publishing neuroscientific research. International collaboration in all subfields of neuroscience is substantial. Eastern Southern and Northern regions and developmental neuroscience require more focus and funding.


Assuntos
Bibliometria , Pesquisa Biomédica , Neurociências , Publicações/estatística & dados numéricos , Humanos , Arábia Saudita
2.
Beilstein J Nanotechnol ; 10: 2217-2228, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31807407

RESUMO

The combination of magnetic nanoparticles with a porous silica is a composite that has attracted significant attention for potential multifunctional theranostic applications. In this study, 30 wt % CuFe2O4 was impregnated into a matrix of monodispersed spherical hydrophilic silica (HYPS) nanoparticles through a simple dry impregnation technique. The chemotherapy drug cisplatin was loaded through electrostatic equilibrium adsorption over 24 h in normal saline solution. The presence of cubic spinel CuFe2O4 on HYPS was confirmed through powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR) and diffuse reflectance UV-vis spectroscopy (DR UV-vis) analysis. The HYPS particles showed a surface area of 170 m2/g, pore size of 8.3 nm and pore volume of 0.35 cm3/g. The cisplatin/CuFe2O4/HYPS nanoformulation showed the accumulation of copper ferrite nanoparticles on the surface and in the pores of HYPS with a surface area of 45 m2/g, pore size of 16 nm and pore volume of 0.18 cm3/g. Transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) mapping analysis showed the presence of homogeneous silica particles with nanoclusters of copper ferrite distributed on the HYPS support. Vibrating sample magnetometry (VSM) analysis of CuFe2O4/HYPS showed paramagnetic behavior with a saturated magnetization value of 7.65 emu/g. DRS UV-vis analysis revealed the functionalization of cisplatin in tetrahedral and octahedral coordination in the CuFe2O4/HYPS composite. Compared to other supports such as mesocellular foam and silicalite, the release of cisplatin using the dialysis membrane technique was found to be superior when CuFe2O4/HYPS was applied as the support. An in vitro experiment was conducted to determine the potential of CuFe2O4/HYPS as an anticancer agent against the human breast cancer cell line MCF-7. The results show that the nanoparticle formulation can effectively target cancerous cells and could be an effective tumor imaging guide and drug delivery system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...