Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21268009

RESUMO

ImportanceThe antiviral activity and efficacy of anti-SARS-CoV-2 monoclonal antibody (mAb) therapies to accelerate recovery from COVID-19 is important to define. ObjectiveTo determine safety and efficacy of the mAb bamlanivimab to reduce nasopharyngeal (NP) SARS-CoV-2 RNA levels and symptom duration. DesignACTIV-2/A5401 is a randomized, blinded, placebo-controlled platform trial. Two dose cohorts were enrolled between August 19 and November 17, 2020 for phase 2 evaluation: in the first, participants were randomized 1:1 to bamlanivimab 7000 mg versus placebo, and in the second to bamlanivimab 700 mg versus placebo. Randomization was stratified by time from symptom onset ([≤] or >5 days) and risk of progression to severe COVID-19 ("higher" vs "lower"). SettingMulticenter trial conducted at U.S. sites. ParticipantsNon-hospitalized adults [≥]18 years of age with positive SARS-CoV-2 antigen or nucleic acid test within 7 days, [≤]10 days of COVID-19 symptoms, and with oxygen saturation [≥]92% within 48 hours prior to study entry. InterventionSingle infusion of bamlanivimab (7000 or 700 mg) or placebo. Main Outcomes and MeasuresDetection of NP SARS-CoV-2 RNA at days 3, 7, 14, 21, and 28, time to improvement of all of 13 targeted COVID-19 symptoms by daily self-assessment through day 28, and grade 3 or higher treatment emergent adverse events (TEAEs) through day 28. Secondary measures included quantitative NP SARS-CoV-2 RNA, all-cause hospitalizations and deaths (composite), area under the curve of symptom scores from day 0 through day 28, plasma bamlanivimab concentrations, plasma and serum inflammatory biomarkers, and safety through week 24. ResultsNinety-four participants were enrolled to the 7000 mg cohort and 223 to the 700 mg cohort and initiated study intervention. The proportion meeting protocol criteria for "higher" risk for COVID-19 progression was 42% and 51% for the 7000 and 700 mg cohort, respectively. Median time from symptom onset at study entry for both cohorts was 6 days. There was no difference in the proportion with undetectable NP SARS-CoV-2 RNA at any post-treatment timepoints (risk ratio compared to placebo, 0.82-1.05 for 7000 mg dose [overall p=0.88] and 0.81-1.21 for 700 mg dose [overall p=0.49]), time to symptom improvement (median of 21 vs 18.5 days, p=0.97, for 7000 mg bamlanivimab vs placebo and 24 vs 20.5 days, p=0.08, for 700 mg bamlanivimab vs placebo), or grade 3+ TEAEs with either dose compared to placebo. Median NP SARS-CoV-2 RNA levels were lower at day 3 and C-reactive protein, ferritin, and fibrinogen levels significantly reduced at days 7 and 14 for bamlanivimab 700 mg compared to placebo, with similar trends observed for bamlanivimab 7000 mg. Viral decay modeling supported more rapid decay with bamlanivimab compared to placebo. Conclusions and RelevanceTreatment with bamlanivimab 7000 mg and 700 mg was safe and compared to placebo led to more rapid reductions in NP SARS-CoV-2 RNA and inflammatory biomarkers, but did not decrease time to symptom improvement. The clinical utility of mAbs for outcomes other than hospitalizations and deaths is uncertain. Trial RegistrationClinicalTrials.gov Identifier: NCT04518410 KEY POINTSO_ST_ABSQuestionC_ST_ABSWhat is the safety and efficacy of bamlanivimab monoclonal antibody (mAb) treatment for mild to moderate COVID-19? FindingsIn this randomized, placebo-controlled phase 2 trial of 317 non-hospitalized adults with COVID-19, there was no relationship between symptoms or disease progression risk and nasopharyngeal (NP) virus shedding. Bamlanivimab was safe and reduced NP SARS-CoV-2 RNA levels and inflammatory biomarker levels more than placebo, but did not shorten symptom duration. MeaningNasal virus shedding was not associated with symptoms or baseline risk factors for severe COVID-19. Bamlanivimab, which has been associated with reduced hospitalizations in high-risk individuals, demonstrated antiviral activity with early post-treatment NP sampling but did not accelerate symptom improvement. The clinical utility of bamlanivimab for outcomes other than hospitalizations and deaths, including longer-term outcomes, is uncertain.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21267028

RESUMO

Considerable effort was made to better understand why some people suffer from severe COVID-19 while others remain asymptomatic. This has led to important clinical findings; people with severe COVID-19 generally experience persistently high levels of inflammation, slower viral load decay, display a dysregulated type-I interferon response, have less active natural killer cells and increased levels of neutrophil extracellular traps. How these findings are connected to the pathogenesis of COVID-19 remains unclear. We propose a mathematical model that sheds light on this issue. The model focuses on cells that trigger inflammation through molecular patterns: infected cells carrying pathogen-associated molecular patterns (PAMPs) and damaged cells producing damage-associated molecular patterns (DAMPs). The former signals the presence of pathogens while the latter signals danger such as hypoxia or the lack of nutrients. Analyses show that SARS-CoV-2 infections can lead to a self-perpetuating feedback loop between DAMP expressing cells and inflammation. It identifies the inability to quickly clear PAMPs and DAMPs as the main contributor to hyperinflammation. The model explains clinical findings and the conditional impact of treatments on disease severity. The simplicity of the model and its high level of consistency with clinical findings motivate its use for the formulation of new treatment strategies.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21263105

RESUMO

Resistance mutations to monoclonal antibody (mAb) therapy has been reported, but in the non-immunosuppressed population, it is unclear if in vivo emergence of SARS-CoV-2 resistance mutations alters either viral replication dynamics or therapeutic efficacy. In ACTIV-2/A5401, non-hospitalized participants with symptomatic SARS-CoV-2 infection were randomized to bamlanivimab (700mg or 7000mg) or placebo. Treatment-emergent resistance mutations were significantly more likely detected after bamlanivimab 700mg treatment than placebo (7% of 111 vs 0% of 112 participants, P=0.003). There were no treatment-emergent resistance mutations among the 48 participants who received bamlanivimab 7000mg. Participants with emerging mAb resistant virus had significantly higher pre-treatment nasopharyngeal and anterior nasal viral load. Intensive respiratory tract viral sampling revealed the dynamic nature of SARS-CoV-2 evolution, with evidence of rapid and sustained viral rebound after emergence of resistance mutations, and worsened symptom severity. Participants with emerging bamlanivimab resistance often accumulated additional polymorphisms found in current variants of concern/interest and associated with immune escape. These results highlight the potential for rapid emergence of resistance during mAb monotherapy treatment, resulting in prolonged high level respiratory tract viral loads and clinical worsening. Careful virologic assessment should be prioritized during the development and clinical implementation of antiviral treatments for COVID-19.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21259581

RESUMO

The within-host viral kinetics of SARS-CoV-2 infection and how they relate to a persons infectiousness are not well understood. This limits our ability to quantify the impact of interventions on viral transmission. Here, we develop data-driven viral dynamic models of SARS-CoV-2 infection and estimate key within-host parameters such as the infected cell half-life and the within-host reproductive number. We then develop a model linking VL to infectiousness, showing that a persons infectiousness increases sub-linearly with VL. We show that the logarithm of the VL in the upper respiratory tract (URT) is a better surrogate of infectiousness than the VL itself. Using data on VL and the predicted infectiousness, we further incorporated data on antigen and reverse transcription polymerase chain reaction (RT-PCR) tests and compared their usefulness in detecting infection and preventing transmission. We found that RT-PCR tests perform better than antigen tests assuming equal testing frequency; however, more frequent antigen testing may perform equally well with RT-PCR tests at a lower cost, but with many more false-negative tests. Overall, our models provide a quantitative framework for inferring the impact of therapeutics and vaccines that lower VL on the infectiousness of individuals and for evaluating rapid testing strategies. SignificanceQuantifying the kinetics of SARS-CoV-2 infection and individual infectiousness is key to quantitatively understanding SARS-CoV-2 transmission and evaluating intervention strategies. Here we developed data-driven within-host models of SARS-CoV-2 infection and by fitting them to clinical data we estimated key within-host viral dynamic parameters. We also developed a mechanistic model for viral transmission and show that the logarithm of the viral load in the upper respiratory tract serves an appropriate surrogate for a persons infectiousness. Using data on how viral load changes during infection, we further evaluated the effectiveness of PCR and antigen-based testing strategies for averting transmission and identifying infected individuals.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20201772

RESUMO

SARS-CoV-2 is a human pathogen that causes infection in both the upper respiratory tract (URT) and the lower respiratory tract (LRT). The viral kinetics of SARS-CoV-2 infection and how they relate to infectiousness and disease progression are not well understood. Here, we develop data-driven viral dynamic models of SARS-CoV-2 infection in both the URT and LRT. We fit the models to viral load data from patients with likely infection dates known, we estimated that infected individuals with a longer incubation period had lower rates of viral growth, took longer to reach peak viremia in the URT, and had higher chances of presymptomatic transmission. We then developed a model linking viral load to infectiousness. We found that to explain the substantial fraction of transmissions occurring presymptomatically, the infectiousness of a person should depend on a saturating function of the viral load, making the logarithm of the URT viral load a better surrogate of infectiousness than the viral load itself. Comparing the roles of target-cell limitation, the innate immune response, proliferation of target cells and spatial infection in the LRT, we found that spatial dissemination in the lungs is likely to be an important process in sustaining the prolonged high viral loads. Overall, our models provide a quantitative framework for predicting how SARS-CoV-2 within-host dynamics determine infectiousness and represent a step towards quantifying how viral load dynamics and the immune responses determine disease severity.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20118067

RESUMO

Development of an effective antiviral drug for COVID-19 is a global health priority. Although several candidate drugs have been identified through in vitro and in vivo models, consistent and compelling evidence for effective drugs from clinical studies is limited. The lack of evidence could be in part due to heterogeneity of virus dynamics among patients and late initiation of treatment. We first quantified the heterogeneity of viral dynamics which could be a confounder in compassionate use programs. Second, we demonstrated that an antiviral drug is unlikely to be effective if initiated after a short period following symptom onset. For accurate evaluation of the efficacy of an antiviral drug for COVID-19, antiviral treatment should be initiated before or soon after symptom onset in randomized clinical trials. One Sentence SummaryStudy design to evaluate antiviral effect.

7.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20092965

RESUMO

Repurposed drugs that are immediately available and safe to use constitute a first line of defense against new viral infections. Despite limited antiviral activity against SARS-CoV-2, several drugs are being tested as medication or as prophylaxis to prevent infection. Using a stochastic model of early phase infection, we find that a critical efficacy above 87% is needed to block viral establishment. This can be improved by combination therapy. Below the critical efficacy, establishment of infection can sometimes be prevented, most effectively with drugs blocking viral entry into cells or enhancing viral clearance. Even when a viral infection cannot be prevented, antivirals delay the time to detectable viral loads. This delay flattens the within-host viral dynamic curve, possibly reducing transmission and symptom severity. Thus, antiviral prophylaxis, even with reduced efficacy, could be efficiently used to prevent or alleviate infection in people at high risk.

8.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20047886

RESUMO

We modeled the viral dynamics of 13 untreated patients infected with SARS-CoV-2 to infer viral growth parameters and predict the effects of antiviral treatments. In order to reduce peak viral load by more than 2 logs, drug efficacy needs to be greater than 90% if treatment is administered after symptom onset; an efficacy of 60% could be sufficient if treatment is initiated before symptom onset. Given their pharmacokinetic/pharmacodynamic properties, current investigated drugs may be in a range of 6-87% efficacy. They may help control virus if administered very early, but may not have a major effect in severe patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...