Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Saudi J Biol Sci ; 31(3): 103918, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38283772

RESUMO

Cancer is a highly complex and heterogeneous disease. Traditional methods of cancer classification based on histopathology have limitations in guiding personalized prognosis and therapy. Gene expression profiling provides a powerful approach to unraveling molecular intricacies and better-stratifying cancer subtypes. In this study, we performed an integrative analysis of RNA sequencing data from five cancer types - BRCA, KIRC, COAD, LUAD, and PRAD. A machine learning workflow consisting of dataset identification, normalization, feature selection, dimensionality reduction, clustering, and classification was implemented. The k-means algorithm was applied to categorize samples into distinct clusters based solely on gene expression patterns. Five unique clusters emerged from the unsupervised machine learning based analysis, significantly correlating with the known cancer types. BRCA aligned predominantly with one cluster, while COAD spanned three clusters. KIRC was represented within two main clusters. LUAD is associated strongly with a single cluster and PRAD with another cluster. This demonstrates the ability of machine learning approaches to unravel complex signatures within transcriptomic profiles that can delineate cancer subtypes. The proposed study highlights the potential of integrative analytics to derive meaningful biological insights from high-dimensional omics datasets. Molecular subtyping through machine learning clustering enhances our understanding of the intrinsic heterogeneities and pathways dysregulated in different cancers. Overall, this study exemplifies a powerful computational framework to classify gene expressions of patients having different types of cancers and guide personalized therapeutic decisions. Finally, Wide Neural Network demonstrates a significantly higher accuracy, achieving 99.834% on the validation set and an even more impressive 99.995% on the test set.

2.
Diagnostics (Basel) ; 13(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37958260

RESUMO

Retinal blood vessel segmentation is a valuable tool for clinicians to diagnose conditions such as atherosclerosis, glaucoma, and age-related macular degeneration. This paper presents a new framework for segmenting blood vessels in retinal images. The framework has two stages: a multi-layer preprocessing stage and a subsequent segmentation stage employing a U-Net with a multi-residual attention block. The multi-layer preprocessing stage has three steps. The first step is noise reduction, employing a U-shaped convolutional neural network with matrix factorization (CNN with MF) and detailed U-shaped U-Net (D_U-Net) to minimize image noise, culminating in the selection of the most suitable image based on the PSNR and SSIM values. The second step is dynamic data imputation, utilizing multiple models for the purpose of filling in missing data. The third step is data augmentation through the utilization of a latent diffusion model (LDM) to expand the training dataset size. The second stage of the framework is segmentation, where the U-Nets with a multi-residual attention block are used to segment the retinal images after they have been preprocessed and noise has been removed. The experiments show that the framework is effective at segmenting retinal blood vessels. It achieved Dice scores of 95.32, accuracy of 93.56, precision of 95.68, and recall of 95.45. It also achieved efficient results in removing noise using CNN with matrix factorization (MF) and D-U-NET according to values of PSNR and SSIM for (0.1, 0.25, 0.5, and 0.75) levels of noise. The LDM achieved an inception score of 13.6 and an FID of 46.2 in the augmentation step.

3.
Vaccines (Basel) ; 11(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36679950

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease caused a highly problematic situation worldwide. Various vaccines were launched to combat the COVID-19 pandemic. This study aims to investigate the adverse effects of first and second doses of the Sinopharm vaccine among vaccinated medical and dental students and healthcare workers. A well-established questionnaire was distributed online, and 414 medical and dental students and healthcare workers (HCW) comprising 355 females (85.7%) and 59 males (14.3%) participated; all were vaccinated with two doses of Sinopharm. The most common side effect was pain at the injection site after dose one in 253 respondents (61.3%) and after dose two in 161 respondents (38.9%). Other symptoms included general lethargy in 168 (40.6%), myalgia/body pain in 99 (23.9%), low-grade fever in 93 (22.4%), and headache in 87 (21%) respondents. Common side effects reported after the second dose of the vaccine following pain at the injection site included general lethargy in 21.3% (88), headache in 10.4% (43), myalgia/body pain in 9.9% (41), and low-grade fever in 6.1% (25) of the respondents. In conclusion, common adverse effects of the Sinopharm vaccine were pain at the injection site, general lethargy, myalgia, body pain, low-grade fever, and headache. These adverse effects were mild in intensity for both doses but slightly more frequent and severe for the first dose than the second dose.

4.
Bioengineering (Basel) ; 9(10)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36290533

RESUMO

In today's era, vegetables are considered a very important part of many foods. Even though every individual can harvest their vegetables in the home kitchen garden, in vegetable crops, Tomatoes are the most popular and can be used normally in every kind of food item. Tomato plants get affected by various diseases during their growing season, like many other crops. Normally, in tomato plants, 40-60% may be damaged due to leaf diseases in the field if the cultivators do not focus on control measures. In tomato production, these diseases can bring a great loss. Therefore, a proper mechanism is needed for the detection of these problems. Different techniques were proposed by researchers for detecting these plant diseases and these mechanisms are vector machines, artificial neural networks, and Convolutional Neural Network (CNN) models. In earlier times, a technique was used for detecting diseases called the benchmark feature extraction technique. In this area of study for detecting tomato plant diseases, another model was proposed, which was known as the real-time faster region convolutional neural network (RTF-RCNN) model, using both images and real-time video streaming. For the RTF-RCNN, we used different parameters like precision, accuracy, and recall while comparing them with the Alex net and CNN models. Hence the final result shows that the accuracy of the proposed RTF-RCNN is 97.42%, which is higher than the rate of the Alex net and CNN models, which were respectively 96.32% and 92.21%.

5.
Sensors (Basel) ; 22(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36081083

RESUMO

The Internet of Things (IoT) refers to a system of interconnected, internet-connected devices and sensors that allows the collection and dissemination of data. The data provided by these sensors may include outliers or exhibit anomalous behavior as a result of attack activities or device failure, for example. However, the majority of existing outlier detection algorithms rely on labeled data, which is frequently hard to obtain in the IoT domain. More crucially, the IoT's data volume is continually increasing, necessitating the requirement for predicting and identifying the classes of future data. In this study, we propose an unsupervised technique based on a deep Variational Auto-Encoder (VAE) to detect outliers in IoT data by leveraging the characteristic of the reconstruction ability and the low-dimensional representation of the input data's latent variables of the VAE. First, the input data are standardized. Then, we employ the VAE to find a reconstructed output representation from the low-dimensional representation of the latent variables of the input data. Finally, the reconstruction error between the original observation and the reconstructed one is used as an outlier score. Our model was trained only using normal data with no labels in an unsupervised manner and evaluated using Statlog (Landsat Satellite) dataset. The unsupervised model achieved promising and comparable results with the state-of-the-art outlier detection schemes with a precision of ≈90% and an F1 score of 79%.

6.
Comput Intell Neurosci ; 2022: 1874436, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990150

RESUMO

The smart city is an emerging concept that is based on the integration of various electronic devices and citizens that enhance the flow of information. IoT is an integral part for next generation wireless network infrastructure for acting as an interface of collecting data and controlling delivery of message which are using in smart cities. In this paper, an IoT-oriented relay assisted MIMO for beyond the fifth-generation wireless network system is proposed. The proposed system provides higher capacity and lower BER. The proposed system's BER results are compared with various combinations of transmission and receiving antennas at source, relay, and destination. It is found from BER performance that the developed scheme with relay does provide 1-17 dB gain with respect to direct connection. It is also found from mathematical analysis and simulation results that this scheme provides 3 to 9 b/s/Hz improvement in performance of capacity at 5 to 10 dB by adding a different combination of STBC and VBLAST. Simulation results are also presented to demonstrate the diversity and multiplexing gain that is a key to providing high data rates with reliable communication with many interferences for the IoT system. This system can also be used for massive antennas-based IoT system by raising the number of transmitting and receiving antennas with proposed encoding and decoding techniques explained in this paper.


Assuntos
Eletrônica , Cidades , Simulação por Computador
7.
Artigo em Inglês | MEDLINE | ID: mdl-35955051

RESUMO

Public feelings and reactions associated with finance are gaining significant importance as they help individuals, public health, financial and non-financial institutions, and the government understand mental health, the impact of policies, and counter-response. Every individual sentiment linked with a financial text can be categorized, whether it is a headline or the detailed content published in a newspaper. The Guardian newspaper is considered one of the most famous and the biggest websites for digital media on the internet. Moreover, it can be one of the vital platforms for tracking the public's mental health and feelings via sentimental analysis of news headlines and detailed content related to finance. One of the key purposes of this study is the public's mental health tracking via the sentimental analysis of financial text news primarily published on digital media to identify the overall mental health of the public and the impact of national or international financial policies. A dataset was collected using The Guardian application programming interface and processed using the support vector machine, AdaBoost, and single layer convolutional neural network. Among all identified techniques, the single layer convolutional neural network with a classification accuracy of 0.939 is considered the best during the training and testing phases as it produced efficient performance and effective results compared to other techniques, such as support vector machine and AdaBoost with associated classification accuracies 0.677 and 0.761, respectively. The findings of this research would also benefit public health, as well as financial and non-financial institutions.


Assuntos
Internet , Saúde Mental , Humanos , Aprendizado de Máquina , Redes Neurais de Computação , Máquina de Vetores de Suporte
8.
Sensors (Basel) ; 22(12)2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35746414

RESUMO

Cloud Computing (CC) provides a combination of technologies that allows the user to use the most resources in the least amount of time and with the least amount of money. CC semantics play a critical role in ranking heterogeneous data by using the properties of different cloud services and then achieving the optimal cloud service. Regardless of the efforts made to enable simple access to this CC innovation, in the presence of various organizations delivering comparative services at varying cost and execution levels, it is far more difficult to identify the ideal cloud service based on the user's requirements. In this research, we propose a Cloud-Services-Ranking Agent (CSRA) for analyzing cloud services using end-users' feedback, including Platform as a Service (PaaS), Infrastructure as a Service (IaaS), and Software as a Service (SaaS), based on ontology mapping and selecting the optimal service. The proposed CSRA possesses Machine-Learning (ML) techniques for ranking cloud services using parameters such as availability, security, reliability, and cost. Here, the Quality of Web Service (QWS) dataset is used, which has seven major cloud services categories, ranked from 0-6, to extract the required persuasive features through Sequential Minimal Optimization Regression (SMOreg). The classification outcomes through SMOreg are capable and demonstrate a general accuracy of around 98.71% in identifying optimum cloud services through the identified parameters. The main advantage of SMOreg is that the amount of memory required for SMO is linear. The findings show that our improved model in terms of precision outperforms prevailing techniques such as Multilayer Perceptron (MLP) and Linear Regression (LR).


Assuntos
Computação em Nuvem , Software , Coleta de Dados , Retroalimentação , Reprodutibilidade dos Testes
9.
Comput Intell Neurosci ; 2022: 6447769, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548099

RESUMO

Magnetic resonance imaging (MRI) is an accurate and noninvasive method employed for the diagnosis of various kinds of diseases in medical imaging. Most of the existing systems showed significant performances on small MRI datasets, while their performances decrease against large MRI datasets. Hence, the goal was to design an efficient and robust classification system that sustains a high recognition rate against large MRI dataset. Accordingly, in this study, we have proposed the usage of a novel feature extraction technique that has the ability to extract and select the prominent feature from MRI image. The proposed algorithm selects the best features from the MRI images of various diseases. Further, this approach discriminates various classes based on recursive values such as partial Z-value. The proposed approach only extracts a minor feature set through, respectively, forward and backward recursion models. The most interrelated features are nominated in the forward regression model that depends on the values of partial Z-test, while the minimum interrelated features are diminished from the corresponding feature space under the presence of the backward model. In both cases, the values of Z-test are estimated through the defined labels of the diseases. The proposed model is efficiently looking the localized features, which is one of the benefits of this method. After extracting and selecting the best features, the model is trained by utilizing support vector machine (SVM) to provide the predicted labels to the corresponding MRI images. To show the significance of the proposed model, we utilized a publicly available standard dataset such as Harvard Medical School and Open Access Series of Imaging Studies (OASIS), which contains 24 various brain diseases including normal. The proposed approach achieved the best classification accuracy against existing state-of-the-art systems.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Algoritmos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Máquina de Vetores de Suporte
10.
Comput Intell Neurosci ; 2022: 9153207, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186072

RESUMO

Most plant diseases have apparent signs, and today's recognized method is for an expert plant pathologist to identify the disease by looking at infected plant leaves using a microscope. The fact is that manually diagnosing diseases is time consuming and that the effectiveness of the diagnosis is related to the pathologist's talents, making this a great application area for computer-aided diagnostic systems. The proposed work describes an approach for detecting and classifying diseases in citrus plants using deep learning and image processing. The main cause of decreased productivity is considered to be plant diseases, which results in financial losses. Citrus is an important source of nutrients such as vitamin C all around the world. On the contrary, citrus diseases have a negative impact on the citrus fruit and quality. In the recent decade, computer vision and image processing techniques have become increasingly popular for the detection and classification of plant diseases. The suggested approach is evaluated on the citrus disease image gallery dataset and the combined dataset (citrus image datasets of infested scale and plant village). These datasets were used to identify and classify citrus diseases such as anthracnose, black spot, canker, scab, greening, and melanose. AlexNet and VGG19 are two kinds of convolutional neural networks that were used to build and test the proposed approach. The system's total performance reached 94% at its best. The proposed approach outperforms the existing methods.


Assuntos
Citrus , Aprendizado Profundo , Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Doenças das Plantas
11.
Comput Intell Neurosci ; 2022: 6138434, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35035461

RESUMO

Fog computing (FC) based sensor networks have emerged as a propitious archetype for next-generation wireless communication technology with caching, communication, and storage capacity services in the edge. Mobile edge computing (MEC) is a new era of digital communication and has a rising demand for intelligent devices and applications. It faces performance deterioration and quality of service (QoS) degradation problems, especially in the Internet of Things (IoT) based scenarios. Therefore, existing caching strategies need to be enhanced to augment the cache hit ratio and manage the limited storage to accelerate content deliveries. Alternatively, quantum computing (QC) appears to be a prospect of more or less every typical computing problem. The framework is basically a merger of a deep learning (DL) agent deployed at the network edge with a quantum memory module (QMM). Firstly, the DL agent prioritizes caching contents via self organizing maps (SOMs) algorithm, and secondly, the prioritized contents are stored in QMM using a Two-Level Spin Quantum Phenomenon (TLSQP). After selecting the most appropriate lattice map (32 × 32) in 750,000 iterations using SOMs, the data points below the dark blue region are mapped onto the data frame to get the videos. These videos are considered a high priority for trending according to the input parameters provided in the dataset. Similarly, the light-blue color region is also mapped to get medium-prioritized content. After the SOMs algorithm's training, the topographic error (TE) value together with quantization error (QE) value (i.e., 0.0000235) plotted the most appropriate map after 750,000 iterations. In addition, the power of QC is due to the inherent quantum parallelism (QP) associated with the superposition and entanglement principles. A quantum computer taking "n" qubits that can be stored and execute 2 n presumable combinations of qubits simultaneously reduces the utilization of resources compared to conventional computing. It can be analyzed that the cache hit ratio will be improved by ranking the content, removing redundant and least important content, storing the content having high and medium prioritization using QP efficiently, and delivering precise results. The experiments for content prioritization are conducted using Google Colab, and IBM's Quantum Experience is considered to simulate the quantum phenomena.


Assuntos
Metodologias Computacionais , Aprendizado Profundo , Algoritmos , Teoria Quântica
12.
PeerJ Comput Sci ; 7: e646, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34401475

RESUMO

Cardiovascular diseases (CVDs) are the most critical heart diseases. Accurate analytics for real-time heart disease is significant. This paper sought to develop a smart healthcare framework (SHDML) by using deep and machine learning techniques based on optimization stochastic gradient descent (SGD) to predict the presence of heart disease. The SHDML framework consists of two stage, the first stage of SHDML is able to monitor the heart beat rate condition of a patient. The SHDML framework to monitor patients in real-time has been developed using an ATmega32 Microcontroller to determine heartbeat rate per minute pulse rate sensors. The developed SHDML framework is able to broadcast the acquired sensor data to a Firebase Cloud database every 20 seconds. The smart application is infectious in regard to displaying the sensor data. The second stage of SHDML has been used in medical decision support systems to predict and diagnose heart diseases. Deep or machine learning techniques were ported to the smart application to analyze user data and predict CVDs in real-time. Two different methods of deep and machine learning techniques were checked for their performances. The deep and machine learning techniques were trained and tested using widely used open-access dataset. The proposed SHDML framework had very good performance with an accuracy of 0.99, sensitivity of 0.94, specificity of 0.85, and F1-score of 0.87.

13.
Sensors (Basel) ; 21(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071556

RESUMO

The theory of modern organizations considers emotional intelligence to be the metric for tools that enable organizations to create a competitive vision. It also helps corporate leaders enthusiastically adhere to the vision and energize organizational stakeholders to accomplish the vision. In this study, the one-dimensional convolutional neural network classification model is initially employed to interpret and evaluate shifts in emotion over a period by categorizing emotional states that occur at particular moments during mutual interaction using physiological signals. The self-organizing map technique is implemented to cluster overall organizational emotions to represent organizational competitiveness. The analysis of variance test results indicates no significant difference in age and body mass index for participants exhibiting different emotions. However, a significant mean difference was observed for the blood volume pulse, galvanic skin response, skin temperature, valence, and arousal values, indicating the effectiveness of the chosen physiological sensors and their measures to analyze emotions for organizational competitiveness. We achieved 99.8% classification accuracy for emotions using the proposed technique. The study precisely identifies the emotions and locates a connection between emotional intelligence and organizational competitiveness (i.e., a positive relationship with employees augments organizational competitiveness).


Assuntos
Emoções , Redes Neurais de Computação , Algoritmos , Nível de Alerta , Resposta Galvânica da Pele , Humanos
14.
J Healthc Eng ; 2021: 5528622, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33884157

RESUMO

Breast cancer forms in breast cells and is considered as a very common type of cancer in women. Breast cancer is also a very life-threatening disease of women after lung cancer. A convolutional neural network (CNN) method is proposed in this study to boost the automatic identification of breast cancer by analyzing hostile ductal carcinoma tissue zones in whole-slide images (WSIs). The paper investigates the proposed system that uses various convolutional neural network (CNN) architectures to automatically detect breast cancer, comparing the results with those from machine learning (ML) algorithms. All architectures were guided by a big dataset of about 275,000, 50 × 50-pixel RGB image patches. Validation tests were done for quantitative results using the performance measures for every methodology. The proposed system is found to be successful, achieving results with 87% accuracy, which could reduce human mistakes in the diagnosis process. Moreover, our proposed system achieves accuracy higher than the 78% accuracy of machine learning (ML) algorithms. The proposed system therefore improves accuracy by 9% above results from machine learning (ML) algorithms.


Assuntos
Neoplasias da Mama , Algoritmos , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , Aprendizado de Máquina , Redes Neurais de Computação
15.
J Healthc Eng ; 2020: 8857346, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33204404

RESUMO

COVID-19 presents an urgent global challenge because of its contagious nature, frequently changing characteristics, and the lack of a vaccine or effective medicines. A model for measuring and preventing the continued spread of COVID-19 is urgently required to provide smart health care services. This requires using advanced intelligent computing such as artificial intelligence, machine learning, deep learning, cognitive computing, cloud computing, fog computing, and edge computing. This paper proposes a model for predicting COVID-19 using the SIR and machine learning for smart health care and the well-being of the citizens of KSA. Knowing the number of susceptible, infected, and recovered cases each day is critical for mathematical modeling to be able to identify the behavioral effects of the pandemic. It forecasts the situation for the upcoming 700 days. The proposed system predicts whether COVID-19 will spread in the population or die out in the long run. Mathematical analysis and simulation results are presented here as a means to forecast the progress of the outbreak and its possible end for three types of scenarios: "no actions," "lockdown," and "new medicines." The effect of interventions like lockdown and new medicines is compared with the "no actions" scenario. The lockdown case delays the peak point by decreasing the infection and affects the area equality rule of the infected curves. On the other side, new medicines have a significant impact on infected curve by decreasing the number of infected people about time. Available forecast data on COVID-19 using simulations predict that the highest level of cases might occur between 15 and 30 November 2020. Simulation data suggest that the virus might be fully under control only after June 2021. The reproductive rate shows that measures such as government lockdowns and isolation of individuals are not enough to stop the pandemic. This study recommends that authorities should, as soon as possible, apply a strict long-term containment strategy to reduce the epidemic size successfully.


Assuntos
COVID-19/prevenção & controle , Aprendizado de Máquina , Modelos Biológicos , Pandemias/prevenção & controle , Algoritmos , Número Básico de Reprodução/estatística & dados numéricos , Engenharia Biomédica , COVID-19/epidemiologia , Simulação por Computador , Atenção à Saúde , Suscetibilidade a Doenças/epidemiologia , Feminino , Previsões , Humanos , Masculino , Pandemias/estatística & dados numéricos , Distanciamento Físico , Quarentena , SARS-CoV-2 , Arábia Saudita/epidemiologia , Processos Estocásticos
16.
Comput Intell Neurosci ; 2019: 8590560, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31915429

RESUMO

In healthcare, the analysis of patients' activities is one of the important factors that offer adequate information to provide better services for managing their illnesses well. Most of the human activity recognition (HAR) systems are completely reliant on recognition module/stage. The inspiration behind the recognition stage is the lack of enhancement in the learning method. In this study, we have proposed the usage of the hidden conditional random fields (HCRFs) for the human activity recognition problem. Moreover, we contend that the existing HCRF model is inadequate by independence assumptions, which may reduce classification accuracy. Therefore, we utilized a new algorithm to relax the assumption, allowing our model to use full-covariance distribution. Also, in this work, we proved that computation wise our method has very much lower complexity against the existing methods. For the experiments, we used four publicly available standard datasets to show the performance. We utilized a 10-fold cross-validation scheme to train, assess, and compare the proposed model with the conditional learning method, hidden Markov model (HMM), and existing HCRF model which can only use diagonal-covariance Gaussian distributions. From the experiments, it is obvious that the proposed model showed a substantial improvement with p value ≤0.2 regarding the classification accuracy.


Assuntos
Acelerometria/métodos , Algoritmos , Reconhecimento Automatizado de Padrão/métodos , Actigrafia , Humanos , Cadeias de Markov , Atividade Motora , Distribuição Normal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...