Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12537, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822031

RESUMO

This work presents a facile approach for controlling the optical and electrical parameters of a biopolymeric matrix for optoelectronics. Vanadium oxide (V2O5) and chromium oxide (Cr2O3) nanoparticles (NPs) were prepared and incorporated into the carboxymethylcellulose/polyethylene glycol (CMC/PEG) blend by simple chemical techniques. Transmission electron microscopy (HR-TEM), and X-ray diffraction (XRD) data showed that V2O5 and Cr2O3 exhibited spherical shapes with sizes in the range of 40-50 nm and 10-20 nm, respectively. In addition, the blend's degree of crystallinity was sensitive to the V2O5 and Cr2O3 doping ratios. The scanning electron microscopy (FE-SEM) and the elemental chemical analysis (EDAX) used to study the filler distribution inside the blend, and confirmed the existence of both V and Cr in the matrix. Fourier transform infrared (FTIR) spectroscopy showed that the dopants significantly affected the blend reactive (C-O-C, OH, and C=O) groups. The stress-strain curves illustrated the reinforcing effect of the dopants up to 1.0 wt\% Cr2O3/V. The transmittance and absorption index spectra in the visible-IR wavelengths decreased with increasing filler content. Utilizing Tauc's relation and (optical) dielectric loss, the direct (indirect) band gap narrowed from 5.6 (4.5) eV to 4.7 (3.05) eV at 1.0   wt\% Cr2O3/V. All films have an index of refraction in the range of 1.93-2.17. AC conductivity was improved with increasing filler content and temperature. The energy density at 50 °C is in the range of 1-3 J/m3. The influence of V2O5 and Cr2O3 content on the optical conductivity, dielectric constant, loss, and dielectric modulus of CMC/PEG was reported. These enhancements in electrical and optical properties, along with the potential for band gap engineering, offer promising prospects for advanced applications in optoelectronics and energy-related fields.

2.
Sci Rep ; 14(1): 3398, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336969

RESUMO

Nanocomposites based on biopolymers are interesting materials owing to their multifunctionality and ease of preparation. In this study, the solution casting method was used to mix selenium oxide nanoparticles (SeO2 NP) made by a solvothermal method into a bio-blend of carboxymethyl cellulose and starch (CMC/St). XRD analysis showed that SeO2 NP increased the amorphous portion inside the blend. HR-TEM revealed the spherical morphology of these NP with an average diameter of 16.88 nm. The FE-SEM indicated a satisfactory uniform distribution and homogeneity in the surface morphology of the films. FTIR confirmed the interaction between SeO2 and the blend functional groups. The films preserved good transmission after doping, and their direct and indirect band gaps decreased. The refractive index, absorption index, optical conductivity, and other dispersion parameters were improved after SeO2 loading. The DC conductivity of the blend is in the range of 3.8 × 10-7 to 5.6 × 10-4 S/m and improved after loading SeO2 NP. The IV characteristic curves in the temperature range of 300-415 K were studied to figure out the conduction mechanism in the CMC/St/SeO2 composites. Because the optical and electrical properties improved, these nanocomposites could be used for coatings and other things like waveguides, photovoltaic cells, and light-emitting diodes.

3.
Biomimetics (Basel) ; 8(5)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37754177

RESUMO

Subversive environmental impacts and limited amounts of conventional forms of energy necessitate the utilization of renewable energies (REs). Unfortunately, REs such as solar and wind energies are intermittent, so they should be stored in other forms to be used during their absence. One of the finest storage techniques for REs is based on hydrogen generation via an electrolyzer during abundance, then electricity generation by fuel cell (FC) during their absence. With reference to the advantages of the proton exchange membrane fuel cell (PEM-FC), this is preferred over other kinds of FCs. The output power of the PEM-FC is not constant, since it depends on hydrogen pressure, cell temperature, and electric load. Therefore, a maximum power point tracking (MPPT) system should be utilized with PEM-FC. The techniques previously utilized have some disadvantages, such as slowness of response and largeness of each oscillation, overshoot and undershoot, so this article addresses an innovative MPPT for PEM-FC using a consecutive controller made up of proportional-integral (PI) and proportional-derivative (PD) controllers whose gains are tuned via the golden jackal optimization algorithm (GJOA). Simulation results when applying the GJOA-PI-PD controller for MPPT of PEM-FC reveal its advantages over other approaches according to quickness of response, smallness of oscillations, and tininess of overshoot and undershoot. The overshoot resulting using the GJOA-PI-PD controller for MPPT of PEM-FC is smaller than that of perturb and observe, GJOA-PID, and GJOA-FOPID controllers by 98.26%, 86.30%, and 89.07%, respectively. Additionally, the fitness function resulting when using the GJOA-PI-PD controller for MPPT of PEM-FC is smaller than that of the aforementioned approaches by 93.95%, 87.17%, and 87.97%, respectively.

4.
Polymers (Basel) ; 15(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37299376

RESUMO

The low bandgap antimony selenide (Sb2Se3) and wide bandgap organic solar cell (OSC) can be considered suitable bottom and top subcells for use in tandem solar cells. Some properties of these complementary candidates are their non-toxicity and cost-affordability. In this current simulation study, a two-terminal organic/Sb2Se3 thin-film tandem is proposed and designed through TCAD device simulations. To validate the device simulator platform, two solar cells were selected for tandem design, and their experimental data were chosen for calibrating the models and parameters utilized in the simulations. The initial OSC has an active blend layer, whose optical bandgap is 1.72 eV, while the initial Sb2Se3 cell has a bandgap energy of 1.23 eV. The structures of the initial standalone top and bottom cells are ITO/PEDOT:PSS/DR3TSBDT:PC71BM/PFN/Al, and FTO/CdS/Sb2Se3/Spiro-OMeTAD/Au, while the recorded efficiencies of these individual cells are about 9.45% and 7.89%, respectively. The selected OSC employs polymer-based carrier transport layers, specifically PEDOT:PSS, an inherently conductive polymer, as an HTL, and PFN, a semiconducting polymer, as an ETL. The simulation is performed on the connected initial cells for two cases. The first case is for inverted (p-i-n)/(p-i-n) cells and the second is for the conventional (n-i-p)/(n-i-p) configuration. Both tandems are investigated in terms of the most important layer materials and parameters. After designing the current matching condition, the tandem PCEs are boosted to 21.52% and 19.14% for the inverted and conventional tandem cells, respectively. All TCAD device simulations are made by employing the Atlas device simulator given an illumination of AM1.5G (100 mW/cm2). This present study can offer design principles and valuable suggestions for eco-friendly solar cells made entirely of thin films, which can achieve flexibility for prospective use in wearable electronics.

5.
Polymers (Basel) ; 15(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37177362

RESUMO

The utilization of indoor photovoltaics makes it feasible to harvest energy from artificial light sources. Although single-junction indoor photovoltaics have demonstrated exceptional efficacy when using LED lighting, there is still a need for more comprehensive testing of tandem structures. Herein, the first systematic TCAD simulation study on the potential for tandem all-polymer solar cells (all-PSCs) for indoor applications is provided. The presented all-PSCs are based on experimental work in which the top wide bandgap subcell comprises a polymer blend PM7:PIDT, while the bottom narrow bandgap subcell has a polymer blend PM6:PY-IT. Standalone and tandem cells are simulated under AM1.5G solar radiation, and the simulation results are compared with measurements to calibrate the physical models and material parameters revealing PCE values of 10.11%, 16.50%, and 17.58% for the front, rear, and tandem cells, respectively. Next, we assessed the performance characteristics of the three cells under a white LED environment for different color temperatures and light intensities. The results showed a superior performance of the front cell, while a deterioration in the performance was observed for the tandem cell, reflecting in a lower PCE of 16.22% at a color temperature of 2900 K. Thus, an optimized tandem for outdoor applications was not suitable for indoor conditions. In order to alleviate this issue, we propose designing the tandem for indoor lightening by an appropriate choice of thicknesses of the top and bottom absorber layers in order to achieve the current matching point. Reducing the top absorber thickness while slightly increasing the bottom thickness resulted in a higher PCE of 27.80% at 2900 K.

6.
Polymers (Basel) ; 15(8)2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37111970

RESUMO

Tandem solar cells (TSCs) have attracted prodigious attention for their high efficiency, which can surmount the Shockley-Queisser limit for single-junction solar cells. Flexible TSCs are lightweight and cost-effective, and are considered a promising approach for a wide range of applications. In this paper, a numerical model, based on TCAD simulation, is presented to assess the performance of a novel two-terminal (2T) all-polymer/CIGS TSC. To confirm the model, the obtained simulation results were compared with standalone fabricated all-polymer and CIGS single solar cells. Common properties of the polymer and CIGS complementary candidates are their non-toxicity and flexibility. The initial top all-polymer solar cell had a photoactive blend layer (PM7:PIDT), the optical bandgap of which was 1.76 eV, and the initial bottom cell had a photoactive CIGS layer, with a bandgap of 1.15 eV. The simulation was then carried out on the initially connected cells, revealing a power conversion efficiency (PCE) of 16.77%. Next, some optimization techniques were applied to enhance the tandem performance. Upon treating the band alignment, the PCE became 18.57%, while the optimization of polymer and CIGS thicknesses showed the best performance, reflected by a PCE of 22.73%. Moreover, it was found that the condition of current matching did not necessarily meet the maximum PCE condition, signifying the essential role of full optoelectronic simulations. All TCAD simulations were performed via an Atlas device simulator, where the light illumination was AM1.5G. The current study can offer design strategies and effective suggestions for flexible thin-film TSCs for potential applications in wearable electronics.

7.
Materials (Basel) ; 16(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36984391

RESUMO

Current mismatch due to solar cell failure or partial shading of solar panels may cause a reverse biasing of solar cells inside a photovoltaic (PV) module. The reverse-biased cells consume power instead of generating it, resulting in hot spots. To protect the solar cell against the reverse current, we introduce a novel design of a self-protected thin-film crystalline silicon (c-Si) solar cell using TCAD simulation. The proposed device achieves two distinct functions where it acts as a regular solar cell at forward bias while it performs as a backward diode upon reverse biasing. The ON-state voltage (VON) of the backward equivalent diode is found to be 0.062 V, which is lower than the value for the Schottky diode usually used as a protective element in a string of solar cells. Furthermore, enhancement techniques to improve the electrical and optical characteristics of the self-protected device are investigated. The proposed solar cell is enhanced by optimizing different design parameters, such as the doping concentration and the layers' thicknesses. The enhanced cell structure shows an improvement in the short-circuit current density (JSC) and the open-circuit voltage (VOC), and thus an increased power conversion efficiency (PCE) while the VON is increased due to an increase of the JSC. Moreover, the simulation results depict that, by the introduction of an antireflection coating (ARC) layer, the external quantum efficiency (EQE) is enhanced and the PCE is boosted to 22.43%. Although the inclusion of ARC results in increasing VON, it is still lower than the value of VON for the Schottky diode encountered in current protection technology.

8.
Polymers (Basel) ; 14(24)2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36559796

RESUMO

By increasing the application of smart wearables, their electrical energy supply has drawn great attention in the past decade. Sources such as the human body and its motion can produce electrical power as renewable energy using piezoelectric yarns. During the last decade, the development of the piezoelectric fibers used in smart clothes has increased for energy-harvesting applications. Therefore, the energy harvesting from piezoelectric yarns and saving process is an important subject. For this purpose, a new control system was developed based on the combination of the sliding mode and particle swarm optimization (PSO). Using this method, due to the piezoelectric yarn cyclic deformation process, electrical power is produced. This power is considered the input voltage to the controlling system modeled in this article. This system supplies constant voltage to be saved in a battery. The battery supplies power for the electrical elements of smart fabric structure for different applications, such as health care. It is shown that the presence of PSO led to the improvement of system response and error reduction by more than 30%.

9.
ACS Appl Mater Interfaces ; 14(33): 37587-37594, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35920712

RESUMO

Spray coating is an industrially mature technique used to deposit thin films that combines high throughput with the ability to coat nonplanar surfaces. Here, we explore the use of ultrasonic spray coating to fabricate perovskite solar cells (PSCs) over rigid, nonplanar surfaces without problems caused by solution dewetting and subsequent "run-off". Encouragingly, we find that PSCs can be spray-coated using our processes onto glass substrates held at angles of inclination up to 45° away from the horizontal, with such devices having comparable power conversion efficiencies (up to 18.3%) to those spray-cast onto horizontal substrates. Having established that our process can be used to create PSCs on surfaces that are not horizontal, we fabricate devices over a convex glass substrate, with devices having a maximum power conversion efficiency of 12.5%. To our best knowledge, this study represents the first demonstration of a rigid, curved perovskite solar cell. The integration of perovskite photovoltaics onto curved surfaces will likely find direct applications in the aerospace and automotive sectors.

10.
ChemSusChem ; 14(12): 2486, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34050608

RESUMO

Invited for this month's cover is the group of David Lidzey at the University of Sheffield. The image shows a futuristic view of large-scale perovskite solar cell (PSC) manufacture. This includes a high-volume roll-to-roll printing facility and cold-storage of PSC precursor solutions in large industrial fridges. The Full Paper itself is available at 10.1002/cssc.202100332.

11.
ChemSusChem ; 14(12): 2537-2546, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33872471

RESUMO

The development of stable perovskite precursor solutions is critical if solution-processable perovskite solar cells (PSCs) are to be practically manufacturable. Ideally, such precursors should combine high solution stability without using chemical additives that might compromise PSC performance. Here, it was shown that the shelf-life of high-performing perovskite precursors could be greatly improved by storing solutions at low-temperature without the need to alter chemical composition. Devices fabricated from solutions stored for 31 days at 4 °C achieved a champion power conversion efficiency (PCE) of 18.6 % (97 % of original PCE). The choice of precursor solvent also impacted solution shelf-life, with DMSO-based solutions having enhanced solution stability compared to those including DMF. The compositions of aged precursors were explored using NMR spectroscopy, and films made from these solutions were analysed using X-ray diffraction. It was concluded that the improvement in precursor solution stability is directly linked to the suppression of an addition-elimination reaction and the preservation of higher amounts of methylammonium within solution.

12.
ACS Appl Energy Mater ; 3(6): 5552-5562, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32596647

RESUMO

The development of scalable deposition methods for perovskite solar cell materials is critical to enable the commercialization of this nascent technology. Herein, we investigate the use and processing of nanoparticle SnO2 films as electron transport layers in perovskite solar cells and develop deposition methods for ultrasonic spray coating and slot-die coating, leading to photovoltaic device efficiencies over 19%. The effects of postprocessing treatments (thermal annealing, UV ozone, and O2 plasma) are then probed using structural and spectroscopic techniques to characterize the nature of the np-SnO2/perovskite interface. We show that a brief "hot air flow" method can be used to replace extended thermal annealing, confirming that this approach is compatible with high-throughput processing. Our results highlight the importance of interface management to minimize nonradiative losses and provide a deeper understanding of the processing requirements for large-area deposition of nanoparticle metal oxides.

13.
RSC Adv ; 10(66): 40341-40350, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-35520836

RESUMO

The addition of alkali metal halides to hybrid perovskite materials can significantly impact their crystallisation and hence their performance when used in solar cell devices. Previous work on the use of potassium iodide (KI) in active layers to passivate defects in triple-cation mixed-halide perovskites has been shown to enhance their luminescence efficiency and reduce current-voltage hysteresis. However, the operational stability of KI passivated perovskite solar cells under ambient conditions remains largely unexplored. By investigating perovskite solar cell performance with SnO2 or TiO2 electron transport layers (ETL), we propose that defect passivation using KI is highly sensitive to the composition of the perovskite-ETL interface. We reconfirm findings from previous reports that KI preferentially interacts with bromide ions in mixed-halide perovskites, and - at concentrations >5 mol% in the precursor solution - modifies the primary absorber composition as well as leading to the phase segregation of an undesirable secondary non-perovskite phase (KBr) at high KI concentration. Importantly, by studying both material and device stability under continuous illumination and bias under ambient/high-humidity conditions, we show that this secondary phase becomes a favourable degradation product, and that devices incorporating KI have reduced stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...