Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(22)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38006114

RESUMO

Metal corrosion poses a substantial economic challenge in a technologically advanced world. In this study, novel environmentally friendly anticorrosive graphene oxide (GO)-doped organic-inorganic hybrid polyurethane (LFAOIH@GO-PU) nanocomposite coatings were developed from Leucaena leucocephala oil (LLO). The formulation was produced by the amidation reaction of LLO to form diol fatty amide followed by the reaction of tetraethoxysilane (TEOS) and a dispersion of GOx (X = 0.25, 0.50, and 0.75 wt%) along with the reaction of isophorane diisocyanate (IPDI) (25-40 wt%) to form LFAOIH@GOx-PU35 nanocomposites. The synthesized materials were characterized by Fourier transform infrared spectroscopy (FTIR); 1H, 13C, and 29Si nuclear magnetic resonance; and X-ray photoelectron spectroscopy. A detailed examination of LFAOIH@GO0.5-PU35 morphology was conducted using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy. These studies revealed distinctive surface roughness features along with a contact angle of around 88 G.U preserving their structural integrity at temperatures of up to 235 °C with minimal loading of GO. Additionally, improved mechanical properties, including scratch hardness (3 kg), pencil hardness (5H), impact resistance, bending, gloss value (79), crosshatch adhesion, and thickness were evaluated with the dispersion of GO. Electrochemical corrosion studies, involving Nyquist, Bode, and Tafel plots, provided clear evidence of the outstanding anticorrosion performance of the coatings.

2.
Polymers (Basel) ; 12(12)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271937

RESUMO

A novel hydrophobic Canola oil-based nanocomposite anticorrosive coating material with different contents of fumes silica (FS) was successfully synthesized via an in situ method. Firstly, a Canola oil-based hydroxyl terminated poly (oxalate-amide) was prepared by a two-step process of amidation and condensation. Secondly, the dispersion of fumed silica (1 to 3 wt.%) in hydroxyl terminated poly (oxalate-amide) was carried out, followed by reaction with toluene-2,4- diisocyanate (TDI) in order to form poly (urethane-oxalate-amide)/fumed silica nanocomposite. The structure and properties of nanocomposite were analyzed by FTIR, NMR (1H/13C), TGA/DTA, DSC, contact angle, and SEM. The physico-mechanical and electrochemical tests were performed in order to check the performance of nanocomposite coating. The results reveal that FS is homogenously dispersed in poly (urethane-oxalate-amide) matrix with a loading amount of less than 3 wt.%. The performance of nanocomposite coating improved when compared to virgin polymer. The synthesized nanocomposite coating can be used in the field of hydrophobic anticorrosive coatings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...