Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15625, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972881

RESUMO

Blood cancer has emerged as a growing concern over the past decade, necessitating early diagnosis for timely and effective treatment. The present diagnostic method, which involves a battery of tests and medical experts, is costly and time-consuming. For this reason, it is crucial to establish an automated diagnostic system for accurate predictions. A particular field of focus in medical research is the use of machine learning and leukemia microarray gene data for blood cancer diagnosis. Even with a great deal of research, more improvements are needed to reach the appropriate levels of accuracy and efficacy. This work presents a supervised machine-learning algorithm for blood cancer prediction. This work makes use of the 22,283-gene leukemia microarray gene data. Chi-squared (Chi2) feature selection methods and the synthetic minority oversampling technique (SMOTE)-Tomek resampling is used to overcome issues with imbalanced and high-dimensional datasets. To balance the dataset for each target class, SMOTE-Tomek creates synthetic data, and Chi2 chooses the most important features to train the learning models from 22,283 genes. A novel weighted convolutional neural network (CNN) model is proposed for classification, utilizing the support of three separate CNN models. To determine the importance of the proposed approach, extensive experiments are carried out on the datasets, including a performance comparison with the most advanced techniques. Weighted CNN demonstrates superior performance over other models when coupled with SMOTE-Tomek and Chi2 techniques, achieving a remarkable 99.9% accuracy. Results from k-fold cross-validation further affirm the supremacy of the proposed model.


Assuntos
Leucemia , Redes Neurais de Computação , Humanos , Leucemia/genética , Algoritmos , Neoplasias Hematológicas/genética , Aprendizado de Máquina Supervisionado , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Aprendizado de Máquina , Perfilação da Expressão Gênica/métodos
2.
Cancers (Basel) ; 15(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38136346

RESUMO

The importance of detecting and preventing ovarian cancer is of utmost significance for women's overall health and wellness. Referred to as the "silent killer," ovarian cancer exhibits inconspicuous symptoms during its initial phases, posing a challenge for timely identification. Identification of ovarian cancer during its advanced stages significantly diminishes the likelihood of effective treatment and survival. Regular screenings, such as pelvic exams, ultrasound, and blood tests for specific biomarkers, are essential tools for detecting the disease in its early, more treatable stages. This research makes use of the Soochow University ovarian cancer dataset, containing 50 features for the accurate detection of ovarian cancer. The proposed predictive model makes use of a stacked ensemble model, merging the strengths of bagging and boosting classifiers, and aims to enhance predictive accuracy and reliability. This combination harnesses the benefits of variance reduction and improved generalization, contributing to superior ovarian cancer prediction outcomes. The proposed model gives 96.87% accuracy, which is currently the highest model result obtained on this dataset so far using all features. Moreover, the outcomes are elucidated utilizing the explainable artificial intelligence method referred to as SHAPly. The excellence of the suggested model is demonstrated through a comparison of its performance with that of other cutting-edge models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...