Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Reg Anesth Pain Med ; 2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37748801

RESUMO

INTRODUCTION: Preclinical research demonstrated water-cooled radiofrequency (CRF) ablations have a significant impact on structural and functional changes compared to standard radiofrequency (SRF) ablations. Clinical procedures utilizing RF to treat chronic pain conditions also show sustained functional outcomes. We hypothesize that the design of the RF probes plays an important role in interventional procedure success, but it remains unclear which specific design features. METHODS: RF ablations were performed in male Lewis rats (n=51) using multiple-sized probes for CRF (17 Ga/2 mm and 17Ga/4 mm) and SRF (22Ga/5 mm, 18Ga/10 mm and 16Ga/10 mm) to evaluate generator energy output, lesion length, axon damage by histology and nerve function analysis via electromyography. To exclude probe design variables beyond size and remain objective, we tested cooled probes with and without water circulation, which resulted in the CRF probe performing like an SRF probe. RESULTS: Consistent with our previous findings in smaller probes, CRF large probes delivered more energy (p<0.01) and generated multiple zones of thermal damage in sciatic nerves. When the water-circulating feature was turned off, however, energy output (p<0.001) and lesion length (p<0.05) was significantly reduced. CRF probes with the water circulation also featured significantly more axonal disruption, than larger sized SRF probes (p<0.0001). CONCLUSIONS: Overall, this data confirms that CRF's water-circulating technology has a greater impact on energy deposition, lesion length and axon damage compared with SRF ablations. Moreover, results suggest that the structural differences between RF modalities cannot be solely attributed to probe size, and it may shed light on its differences in clinical outcomes.

2.
Reg Anesth Pain Med ; 45(10): 792-798, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32784232

RESUMO

BACKGROUND AND OBJECTIVES: Several clinical studies have focused on assessing the effectiveness of different radiofrequency ablation (RFA) modalities in pain management. While a direct head-to-head clinical study is needed, results from independent studies suggest that water-cooled RFA (CRFA) may result in longer lasting pain relief than traditional RFA (TRFA). The primary purpose of this study was, therefore, to investigate in a preclinical model, head-to-head differences between the two RFA technologies. METHODS: RFA was performed in a rat sciatic nerve model (n=66) in two groups: (1) TRFA or (2) CRFA. The surgeon was not blinded to the treatment; however, all the physiological endpoints were assessed in a blinded fashion which include histological, MRI, and nerve function assessment via electromyography. RESULTS: The energy delivered by the generator for CRFA was significantly higher compared with TRFA. Histological staining of nerves harvested immediately following CRFA exhibited extended length and multiple zones of thermal damage compared with TRFA-treated nerves. MRI scans across 4 weeks following treatment showed edematous/inflammatory zones present for longer times following CRFA. Finally, there was greater attenuation and prolonged loss of nerve function measured via electromyography in the CRFA group. CONCLUSIONS: This study shows that CRFA has greater energy output, as well as more pronounced structural and functional changes elicited on the peripheral nerves compared with TRFA. While these preclinical data will need to be confirmed with a large clinical randomized controlled trial, we are encouraged by the direction that they may have set for those trials.


Assuntos
Ablação por Cateter , Dor Crônica , Ablação por Radiofrequência , Animais , Dor Crônica/cirurgia , Nervos Periféricos , Ratos , Resultado do Tratamento , Água
3.
Acta Biomater ; 59: 108-116, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28655657

RESUMO

The modification of the surface of surgical implants with cell adhesion ligands has emerged as a promising approach to improve biomaterial-host interactions. However, these approaches are limited by the non-specific adsorption of biomolecules and uncontrolled presentation of desired bioactive ligands on implant surfaces. This leads to sub-optimal integration with host tissue and delayed healing. Here we present a strategy to grow non-fouling polymer brushes of oligo(ethylene glycol) methacrylate by atom transfer radical polymerization from dopamine-functionalized clinical grade 316 stainless steel. These brushes prevent non-specific adsorption of proteins and attachment of cells. Subsequently, the brushes can be modified with covalently tethered adhesive peptides that provide controlled cell adhesion. This approach may therefore have broad application to promote bone growth and improvements in osseointegration. STATEMENT OF SIGNIFICANCE: Stainless steel (SS) implants are widely used clinically for orthopaedic, spinal, dental and cardiovascular applications. However, non-specific adsorption of biomolecules onto implant surfaces results in sub-optimal integration with host tissue. To allow controlled cell-SS interactions, we have developed a strategy to grow non-fouling polymer brushes that prevent protein adsorption and cell adhesion and can be subsequently functionalized with adhesive peptides to direct cell adhesion and signaling. This approach has broad application to improve osseointegration onto stainless steel implants in bone repair.


Assuntos
Materiais Revestidos Biocompatíveis , Dopamina , Células-Tronco Mesenquimais/metabolismo , Metacrilatos , Peptídeos , Polietilenoglicóis , Aço Inoxidável , Adesão Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Dopamina/química , Dopamina/farmacologia , Humanos , Células-Tronco Mesenquimais/citologia , Metacrilatos/química , Metacrilatos/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Ácidos Polimetacrílicos , Aço Inoxidável/química , Aço Inoxidável/farmacologia
4.
Langmuir ; 31(44): 11989-99, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26484617

RESUMO

Electric charging of colloidal particles in nonpolar solvents plays a crucial role for many industrial applications and products, including rubbers, engine oils, toners, or electronic displays. Although disfavored by the low solvent permittivity, particle charging can be induced by added surfactants, even nonionic ones, but the underlying mechanism is poorly understood, and neither the magnitude nor the sign of charge can generally be predicted from the particle and surfactant properties. The conclusiveness of scientific studies has been limited partly by a traditional focus on few surfactant types with many differences in their chemical structure and often poorly defined composition. Here we investigate the surface charging of poly(methyl methacrylate) particles dispersed in hexane-based solutions of three purified polyisobutylene succinimide polyamine surfactants with "subtle" structural variations. We precisely vary the surfactant chemistry by replacing only a single electronegative atom located at a fixed position within the polar headgroup. Electrophoresis reveals that these small differences between the surfactants lead to qualitatively different particle charging. In the respective particle-free surfactant solutions we also find potentially telling differences in the size of the surfactant aggregates (inverse micelles), the residual water content, and the electric solution conductivity as well as indications for a significant size difference between oppositely charged inverse micelles of the most hygroscopic surfactant. An analysis that accounts for the acid/base properties of all constituents suggests that the observed particle charging is better described by asymmetric adsorption of charged inverse micelles from the liquid bulk than by charge creation at the particle surface. Intramicellar acid-base interaction and intermicellar surfactant exchange help rationalize the formation of micellar ions pairs with size asymmetry.

5.
Chem Res Toxicol ; 23(11): 1701-13, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20964440

RESUMO

Acrolein (AC) and 4-hydroxy-2-nonenal (HNE) are endogenous bis-electrophiles that arise from the oxidation of polyunsaturated fatty acids. AC is also found in high concentrations in cigarette smoke and automobile exhaust. These reactive α,ß-unsaturated aldehyde (enal) covalently modify nucleic acids, to form exocyclic adducts, where the three-carbon hydroxypropano unit bridges the N1 and N(2) positions of deoxyguanosine (dG). The bifunctional nature of these enals allows them to undergo reaction with a second nucleophilic group and form DNA cross-links. These cross-linked enal adducts are likely to contribute to the genotoxic effects of both AC and HNE. We have developed a sensitive mass spectrometric method to detect cross-linked adducts of these enals in calf thymus DNA (CT DNA) treated with AC or HNE. The AC and HNE cross-linked adducts were measured by the stable isotope dilution method, employing a linear quadrupole ion trap mass spectrometer and consecutive reaction monitoring at the MS(3) or MS(4) scan stage. The lower limit of quantification of the cross-linked adducts is ∼1 adduct per 10(8) DNA bases, when 50 µg of DNA is assayed. The cross-linked adducts occur at levels that are ∼1-2% of the levels of the monomeric 1,N(2)-dG adducts in CT DNA treated with either enal.


Assuntos
Acroleína/química , Aldeídos/química , DNA/química , Desoxiguanosina/química , Acroleína/toxicidade , Aldeídos/toxicidade , Animais , Bovinos , Cromatografia Líquida de Alta Pressão , Adutos de DNA/química , Adutos de DNA/isolamento & purificação , Extração em Fase Sólida , Espectrometria de Massas por Ionização por Electrospray , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...