Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(16): 11452-11463, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37022109

RESUMO

Lanthanide-doped luminescent glasses have attracted tremendous attention in modern optoelectronic applications, especially for solid-state white light-emitting diodes (WLEDs). Eu3+/Tb3+ co-doped luminescent glasses are well-known to emit intense yellowish-orange light resulting from the energy transfer from green-emitting sensitizer Tb3+ ions to red-emitting activator Eu3+ ions. Obtaining highly efficient blue light from lanthanide ions remains a challenge due to their weak down-converted emission. In this work, we attempt to use the unique characteristics of blue-emitting carbon dots (BCDs), i.e., a broad emission spectrum, ease of synthesis, and high stability, to compensate for this blue light deficiency problem. Correspondingly, a new strategy is proposed by coupling BCDs with Eu3+/Tb3+ co-doped glasses for their potential utilization in WLEDs. Hence, Eu3+/Tb3+ co-doped glasses are prepared in different thicknesses, i.e., 0.8, 1, and 1.5 mm, via the conventional melt-quenching method and subsequently spin-coated with BCDs to achieve adjustable photoluminescence quantum yield (PLQY) values. Ultimately, a proof-of-concept WLED is prepared using a 0.8 mm thick BCD-coated Eu3+/Tb3+ co-doped luminescent glass exhibiting outstanding luminescence performance with a CRI value of 92, a CCT of 4683 K, color coordinates of (x = 0.3299, y = 0.3421), a satisfying PLQY value of 55.58%, and a corresponding LER value of 316 lm W-1 under the excitation of a 375 nm UV LED. BCD-coated Eu3+/Tb3+ co-doped luminescent glasses show excellent stability against photobleaching, temperature variations, and humidity. The findings of this work indicate that the coupling of BCDs with Eu3+/Tb3+ co-doped luminescent glasses holds great potential as a substitute for traditional solid-state lighting sources.

2.
ACS Omega ; 7(34): 29967-29983, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36061643

RESUMO

Active food packaging has become attractive because of the possibility to provide a longer shelf-life by loading functional agents into the packages to maintain the quality of food products. Herein, photoluminescent and transparent polyvinyl alcohol (PVA)-based composites embedding multicolor fluorescent carbon dots (CD/PVA) were prepared by the solvent casting method. The prepared CDs emit a strong and stable fluorescence in solution while the CD/PVA composite films were transparent, flexible, and showed UV-blocking activity with a strong fluorescence emission. Blue color-emitting CDs showed the highest UV blockage at UVA (87.04%), UVB (87.04%), and UVC (92.22%) regions while PVA alone absorbed only less than 25% of the light in all UV regions. UV blockage capacity was shown to be decreased by half, in line with the emission color shift from blue to red. Thermal properties of the PVA film were improved by the addition of CDs to the polymer, and in vitro cell viability tests showed that none of the CDs were cytotoxic against the human lung fibroblast healthy cell line (MRC-F cells) when integrated into the PVA. The antimicrobial activity of CD/PVA nanofilms was qualitatively determined. The prepared films exhibited good antimicrobial activity against both Gram-positive and Gram-negative bacteria with mild antioxidant and metal chelating activity, and significant inhibition of biofilm formation with a strong link with emitted color and the concentration of the composites. Green- and red-emitting CD/PVA with the highest antimicrobial activity were then analyzed and compared with the plane PVA employing their effect on the shelf-life of strawberries as a model for perishable foods. Fresh strawberries dip coated with CD/PVA and PVA were monitored over time, and virtual evaluations showed that CDs/PVA film coating resulted in reduced weight and moisture loss and significantly inhibited the fungal growth and spoiling for over 6 days at RT and 12 days at fridge conditions maintaining the visual appearance and natural color of the fruit. The findings in this work indicated the potential of reported CD as non-cytotoxic, UV-blocking antimicrobial additives for the development of edible coatings and packages for their use in the food industry, as well as pharmaceutical and healthcare applications.

3.
Dent Mater J ; 40(3): 573-583, 2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-33361658

RESUMO

The aim of this in vitro study was to evaluate the effects of incorporating fluorescent carbon nanoparticles (FCNs) on the hardness, tear, and tensile bond strength of an acrylic-based tissue conditioner and a silicone-based soft denture liner. FCNs added to an acrylic-based tissue conditioner (Viscogel, Dentsply; Group V) and a silicone-based soft denture liner (Ufigel P, Voco; Group U) were divided into subgroups according to the concentrations (Group 0: no water, Group 1: with only water, Group 2: 0.5% FCNs, Group 3: 1% FCNs and Group 4: 10% FCNs) (n=10/per group). Shore A hardness, tear, and tensile bond strength tests were performed. Significant decreases occurred in Groups U2, U3, and U4 compared to the control groups (Groups U0 and U1) in the tear and tensile bond strength test parameters (p<0.025). However, in both types of the tested materials, there were no statistically significant differences among the shore A hardness test results (p>0.025).


Assuntos
Colagem Dentária , Reembasadores de Dentadura , Nanopartículas , Resinas Acrílicas , Carbono , Bases de Dentadura , Teste de Materiais , Elastômeros de Silicone , Propriedades de Superfície , Resistência à Tração
4.
Inflammation ; 43(2): 784, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31925624

RESUMO

In the Published article, the article title shows "Differential Immunomodulatory Effect of Carbon Dots Influenced". It should be "Differential Immunomodulatory Effect of Carbon Dots Influenced by the Type of Surface Passivation Agent".

5.
Inflammation ; 43(2): 777-783, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31873835

RESUMO

Carbon nanodots (CDs) are often synthesized from natural sources including honey, molasses, fruits, and foods, and plant extracts simply through caramelization. They have wide biological applications especially as drug delivery vehicles and bioimaging agent due to their small size and biocompatibility. This article details the synthesis of carbon dots from carob and its derivatives by surface passivation with polyethylene glycol (PEG), polyvinyl alcohol (PVA), and alginate (ALG). We investigated the immune response against CDs and evaluated the effect of surface passivation agents on their immunomodulatory functions. CDPVA had strong anti-inflammatory activities, whereas CDALG were pro-inflammatory. CDPEG had mild anti-inflammatory activities suggesting that these CDs can be used in the drug delivery studies as inert carriers. These results showed that depending on the type of activated groups dominated on the surface, CDs exerted differential effects on the inflammatory potential of the macrophages by changing the pro-inflammatory TNFα and IL6 production levels.


Assuntos
Carbono/farmacologia , Imunomodulação/efeitos dos fármacos , Nanopartículas/administração & dosagem , Tensoativos/farmacologia , Animais , Carbono/química , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Imunomodulação/fisiologia , Camundongos , Nanopartículas/química , Células RAW 264.7 , Tensoativos/síntese química
6.
J Fluoresc ; 29(4): 853-864, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31214927

RESUMO

In this original research, the synthesis of carbon nanodots (CDs) from two different solvent extracts of Nerium oleander by the thermal method was investigated under various physical conditions such as pH, reaction temperature, ionic strength, and surface passivation agent (polyethylene glycol, PEG) presence in the reaction media. The effects of extract types and physical conditions on CDs formation were characterized by UV-Visible spectrophotometry, fluorescence spectrophotometry, Fourier transform infrared spectroscopy and dynamic light scattering analysis. Fluorescent CDs were obtained from PEG included reaction media. Additionally, the enhanced fluorescence intensity correlated with ascending reaction temperature was reported. The hydrodynamic particle size of CDs in aqueous solution was determined between ~1 and 235 nm with negative surface potential in the range of -6 mV and -28 mV. Moreover, CDs synthesized from aqueous extract mostly resulted in smaller size than that of ethanol extract based ones. The impact of surface passivation with PEG on the fluorescence feature of CDs was verified. For the relevant extracts of Oleander, CDs synthesized from PEG included formulations at pH 5 and NaCl free reaction media found as better alternatives than CDs synthesized under other conditions taking account their effect on fluorescence feature, hydrodynamic size and etc. Graphical Abstract.

7.
Mol Biol Rep ; 46(2): 2405-2415, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30778921

RESUMO

In this manuscript, we aimed to report the synthesis of aluminum (Al) incorporated carbon nanodots (CD) and their activities on the immune cells. A green synthesis method involving the in situ doping of the nanodot was conducted. Synthesized nanodots immunomodulatory and immunostimulatory activities were tested in vitro on the macrophages. The produced carbon dots were water-soluble, fluorescent and monodispersed, with an average diameter of around 10-20 nm. After Al-doping, their surface properties, stability, crystallinity, as well as their fluorescent and optical properties were evaluated. These Al-CDs displayed no cytotoxicity and enhanced the pro-inflammatory activities of the mammalian macrophages with much lower aluminum concentrations (‰ 20) compared to that of conventional aluminum salt, by virtue of which they have the potential to serve as safe and effective adjuvant carrier. The stability of the nanocarriers was found to be persistent for over 3 months at room temperature with no significant formation of the aggregates. These results support the promise of such nanodots as the new generation non-toxic adjuvant candidates. Al incorporation changed the activity of carbon nanodot (CD). Plain CD did not have major affect on the inflammatory function of macrophages. Al incorporated CD was able to stimulate the macrophages in the absence of danger stimulus which supports its adjuvant potential. Compared to the Al salt as a control Al-CD was more potent even with ‰ 20 Al concentration on the inflammatory activity of the macropahges in vitro.


Assuntos
Alumínio/farmacologia , Macrófagos/efeitos dos fármacos , Nanopartículas Metálicas/uso terapêutico , Adjuvantes Imunológicos/metabolismo , Adjuvantes Imunológicos/farmacologia , Alumínio/uso terapêutico , Animais , Carbono/química , Macrófagos/imunologia , Camundongos , Pontos Quânticos/uso terapêutico , Células RAW 264.7 , Propriedades de Superfície
8.
Sci Rep ; 7(1): 11222, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28894243

RESUMO

Multi-colored, water soluble fluorescent carbon nanodots (C-Dots) with quantum yield changing from 4.6 to 18.3% were synthesized in multi-gram using dated cola beverage through a simple thermal synthesis method and implemented as conductive and ion donating supercapacitor component. Various properties of C-Dots, including size, crystal structure, morphology and surface properties along with their Raman and electron paramagnetic resonance spectra were analyzed and compared by means of their fluorescence and electronic properties. α-Manganese Oxide-Polypyrrole (PPy) nanorods decorated with C-Dots were further conducted as anode materials in a supercapacitor. Reduced graphene oxide was used as cathode along with the dicationic bis-imidazolium based ionic liquid in order to enhance the charge transfer and wetting capacity of electrode surfaces. For this purpose, we used octyl-bis(3-methylimidazolium)diiodide (C8H16BImI) synthesized by N-alkylation reaction as liquid ionic membrane electrolyte. Paramagnetic resonance and impedance spectroscopy have been undertaken in order to understand the origin of the performance of hybrid capacitor in more depth. In particular, we obtained high capacitance value (C = 17.3 µF/cm2) which is exceptionally related not only the quality of synthesis but also the choice of electrode and electrolyte materials. Moreover, each component used in the construction of the hybrid supercapacitor is also played a key role to achieve high capacitance value.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...