Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; 137: 332-343, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29778948

RESUMO

HZ-166 has previously been characterized as an α2,3-selective GABAA receptor modulator with anticonvulsant, anxiolytic, and anti-nociceptive properties but reduced motor effects. We discovered a series of ester bioisosteres with reduced metabolic liabilities, leading to improved efficacy as anxiolytic-like compounds in rats. In the present study, we evaluated the anticonvulsant effects KRM-II-81 across several rodent models. In some models we also evaluated key structural analogs. KRM-II-81 suppressed hyper-excitation in a network of cultured cortical neurons without affecting the basal neuronal activity. KRM-II-81 was active against electroshock-induced convulsions in mice, pentylenetetrazole (PTZ)-induced convulsions in rats, elevations in PTZ-seizure thresholds, and amygdala-kindled seizures in rats with efficacies greater than that of diazepam. KRM-II-81 was also active in the 6 Hz seizure model in mice. Structural analogs of KRM-II-81 but not the ester, HZ-166, were active in all models in which they were evaluated. We further evaluated KRM-II-81 in human cortical epileptic tissue where it was found to significantly-attenuate picrotoxin- and AP-4-induced increases in firing rate across an electrode array. These molecules generally had a wider margin of separation in potencies to produce anticonvulsant effects vs. motor impairment on an inverted screen test than did diazepam. Ester bioisosters of HZ-166 are thus presented as novel agents for the potential treatment of epilepsy acting via selective positive allosteric amplification of GABAA signaling through α2/α3-containing GABA receptors. The in vivo data from the present study can serve as a guide to dosing parameters that predict engagement of central GABAA receptors.


Assuntos
Anticonvulsivantes/farmacologia , Agonistas de Receptores de GABA-A/farmacologia , Oxazóis/farmacologia , Convulsões/tratamento farmacológico , Potenciais de Ação/efeitos dos fármacos , Animais , Anticonvulsivantes/química , Anticonvulsivantes/farmacocinética , Benzodiazepinas/química , Benzodiazepinas/farmacocinética , Benzodiazepinas/farmacologia , Disponibilidade Biológica , Criança , Diazepam/farmacologia , Modelos Animais de Doenças , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Epilepsia Resistente a Medicamentos/fisiopatologia , Feminino , Agonistas de Receptores de GABA-A/química , Agonistas de Receptores de GABA-A/farmacocinética , Humanos , Imidazóis/química , Imidazóis/farmacocinética , Imidazóis/farmacologia , Masculino , Camundongos , Oxazóis/química , Oxazóis/farmacocinética , Distribuição Aleatória , Ratos Sprague-Dawley , Convulsões/fisiopatologia , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...