Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Eng Lett ; 13(2): 119-127, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37124104

RESUMO

This paper proposes an efficient algorithm for automatic and optimal tuning of pulse amplitude and width for sequential parameter estimation (SPE) of the neural membrane time constant and input-output (IO) curve parameters in closed-loop electromyography-guided (EMG-guided) controllable transcranial magnetic stimulation (cTMS). The proposed SPE is performed by administering a train of optimally tuned TMS pulses and updating the estimations until a stopping rule is satisfied or the maximum number of pulses is reached. The pulse amplitude is computed by the Fisher information maximization. The pulse width is chosen by maximizing a normalized depolarization factor, which is defined to separate the optimization and tuning of the pulse amplitude and width. The normalized depolarization factor maximization identifies the critical pulse width, which is an important parameter in the identifiability analysis, without any prior neurophysiological or anatomical knowledge of the neural membrane. The effectiveness of the proposed algorithm is evaluated through simulation. The results confirm satisfactory estimation of the membrane time constant and IO curve parameters for the simulation case. By defining the stopping rule based on the satisfaction of the convergence criterion with tolerance of 0.01 for 5 consecutive times for all parameters, the IO curve parameters are estimated with 52 TMS pulses, with absolute relative estimation errors (AREs) of less than 7%. The membrane time constant is estimated with 0.67% ARE, and the pulse width value tends to the critical pulse width with 0.16% ARE with 52 TMS pulses. The results confirm that the pulse width and amplitude can be tuned optimally and automatically to estimate the membrane time constant and IO curve parameters in real-time with closed-loop EMG-guided cTMS.

2.
J Neural Eng ; 19(5)2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36055218

RESUMO

Objective.To obtain a formalism for real-time concurrent sequential estimation of neural membrane time constant and input-output (IO) curve with transcranial magnetic stimulation (TMS).Approach.First, the neural membrane response and depolarization factor, which leads to motor evoked potentials with TMS are analytically computed and discussed. Then, an integrated model is developed which combines the neural membrane time constant and IO curve. Identifiability of the proposed integrated model is discussed. A condition is derived, which assures estimation of the proposed integrated model. Finally, sequential parameter estimation (SPE) of the neural membrane time constant and IO curve is described through closed-loop optimal sampling and open-loop uniform sampling TMS. Without loss of generality, this paper focuses on a specific case of commercialized TMS pulse shapes. The proposed formalism and SPE method are directly applicable to other pulse shapes.Main results.The results confirm satisfactory estimation of the membrane time constant and IO curve parameters. By defining a stopping rule based on five times consecutive convergence of the estimation parameters with a tolerances of 0.01, the membrane time constant and IO curve parameters are estimated with 82 TMS pulses with absolute relative estimation errors (AREs) of less than 4% with the optimal sampling SPE method. At this point, the uniform sampling SPE method leads to AREs up to 16%. The uniform sampling method does not satisfy the stopping rule due to the large estimation variations.Significance.This paper provides a tool for real-time closed-loop SPE of the neural time constant and IO curve, which can contribute novel insights in TMS studies. SPE of the membrane time constant enables selective stimulation, which can be used for advanced brain research, precision medicine and personalized medicine.


Assuntos
Córtex Motor , Estimulação Magnética Transcraniana , Encéfalo/fisiologia , Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Estimulação Magnética Transcraniana/métodos
3.
IEEE Trans Neural Syst Rehabil Eng ; 27(8): 1539-1545, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31283508

RESUMO

Motor-evoked potentials (MEPs) are widely used for biomarkers and dose individualization in transcranial stimulation. The large variability of MEPs requires sophisticated methods of analysis to extract information fast and correctly. Development and testing of such methods relies on the availability for realistic models of MEP generation, which are presently lacking. This paper presents a statistical model that can simulate long sequences of individualized MEP amplitude data with properties matching experimental observations. The MEP model includes three sources of trial-to-trial variability: excitability fluctuations, variability in the neural and muscular pathways, and physiological and measurement noise. It also generates virtual human subject data from statistics of population variability. All parameters are extracted as statistical distributions from experimental data from the literature. The model exhibits previously described features, such as stimulus-intensity-dependent MEP amplitude distributions, including bimodal ones. The model can generate long sequences of test data for individual subjects with specified parameters or for subjects from a virtual population. The presented MEP model is the most detailed to date and can be used for the development and implementation of dosing and biomarker estimation algorithms for transcranial stimulation.


Assuntos
Potencial Evocado Motor/fisiologia , Algoritmos , Eletromiografia , Humanos , Modelos Neurológicos , Modelos Estatísticos , Córtex Motor/fisiologia , Reprodutibilidade dos Testes , Estimulação Magnética Transcraniana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...