Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 58(22): 2597-2613.e4, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37673063

RESUMO

An instructive role for metabolism in embryonic patterning is emerging, although a role for mitochondria is poorly defined. We demonstrate that mitochondrial oxidative metabolism establishes the embryonic patterning center, the Spemann-Mangold Organizer, via hypoxia-inducible factor 1α (Hif-1α) in Xenopus. Hypoxia or decoupling ATP production from oxygen consumption expands the Organizer by activating Hif-1α. In addition, oxygen consumption is 20% higher in the Organizer than in the ventral mesoderm, indicating an elevation in mitochondrial respiration. To reconcile increased mitochondrial respiration with activation of Hif-1α, we discovered that the "free" c-subunit ring of the F1Fo ATP synthase creates an inner mitochondrial membrane leak, which decouples ATP production from respiration at the Organizer, driving Hif-1α activation there. Overexpression of either the c-subunit or Hif-1α is sufficient to induce Organizer cell fates even when ß-catenin is inhibited. We propose that mitochondrial leak metabolism could be a general mechanism for activating Hif-1α and Wnt signaling.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Mitocôndrias , Organizadores Embrionários , Animais , Trifosfato de Adenosina/metabolismo , Hipóxia , Mitocôndrias/metabolismo , Organizadores Embrionários/metabolismo , Xenopus laevis
2.
J Neurosurg ; : 1-8, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35171812

RESUMO

OBJECTIVE: Magnetic resonance-guided focused ultrasound (MRgFUS) is an incisionless procedure capable of thermoablation through the focus of multiple acoustic beams. Although MRgFUS is currently approved for the treatment of tremor in adults, its safety and feasibility profile for intracranial lesions in the pediatric and young adult population remains unknown. METHODS: The long-term outcomes of a prospective single-center, single-arm trial of MRgFUS at Nicklaus Children's Hospital in Miami, Florida, are presented. Patients 15-22 years of age with centrally located lesions were recruited, clinically consistent with WHO grade I tumors that require surgical intervention. This cohort consisted of 4 patients with hypothalamic hamartoma (HH), and 1 patient with tuberous sclerosis complex harboring a subependymal giant cell astrocytoma (SEGA). RESULTS: In each case, high-intensity FUS was used to target the intracranial lesion. Real-time MRI was used to monitor the thermoablations. Primary outcomes of interest were tolerability, feasibility, and safety of FUS. The radiographic ablation volume on intra- and postoperative MRI was also assessed. All 5 patients tolerated the procedure without any complications. Successful thermoablation was achieved in 4 of the 5 cases; the calcified SEGA was undertreated due to intratumor calcification, which prevented attainment of the target ablation temperature. The HHs underwent target tissue thermoablations that led to MR signal changes at the treatment site. For the patients harboring HHs, FUS thermoablations occurred without procedure-related complications and led to improvement in seizure control or hypothalamic hyperphagia. All 5 patients were discharged home on postoperative day 1 or 2, without any readmissions. There were no cases of hemorrhage, electrolyte derangement, endocrinopathy, or new neurological deficit in this cohort. CONCLUSIONS: This experience demonstrates that FUS thermoablation of centrally located brain lesions in adolescents and young adults can be performed safely and that it provides therapeutic benefit for associated symptoms.

3.
BMC Evol Biol ; 19(1): 219, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31791235

RESUMO

BACKGROUND: Phylogenetic species trees are widely used in inferring evolutionary relationships. Existing software and algorithms mainly focus on phylogenetic inference. However, less attention has been paid to intermediate steps, such as processing extremely large sequences and preparing configure files to connect multiple software. When the species number is large, the intermediate steps become a bottleneck that may seriously affect the efficiency of tree building. RESULTS: Here, we present an easy-to-use pipeline named PhySpeTree to facilitate the reconstruction of species trees across bacterial, archaeal, and eukaryotic organisms. Users need only to input the abbreviations of species names; PhySpeTree prepares complex configure files for different software, then automatically downloads genomic data, cleans sequences, and builds trees. PhySpeTree allows users to perform critical steps such as sequence alignment and tree construction by adjusting advanced options. PhySpeTree provides two parallel pipelines based on concatenated highly conserved proteins and small subunit ribosomal RNA sequences, respectively. Accessory modules, such as those for inserting new species, generating visualization configurations, and combining trees, are distributed along with PhySpeTree. CONCLUSIONS: Together with accessory modules, PhySpeTree significantly simplifies tree reconstruction. PhySpeTree is implemented in Python running on modern operating systems (Linux, macOS, and Windows). The source code is freely available with detailed documentation (https://github.com/yangfangs/physpetools).


Assuntos
Filogenia , Software , Algoritmos , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Sequência de Bases , Evolução Biológica , Eucariotos/classificação , Eucariotos/genética , Genômica , RNA Ribossômico/genética , Alinhamento de Sequência
4.
Cell Death Dis ; 10(6): 469, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31197129

RESUMO

Familial Parkinson's disease (PD) protein DJ-1 mutations are linked to early onset PD. We have found that DJ-1 binds directly to the F1FO ATP synthase ß subunit. DJ-1's interaction with the ß subunit decreased mitochondrial uncoupling and enhanced ATP production efficiency while in contrast mutations in DJ-1 or DJ-1 knockout increased mitochondrial uncoupling, and depolarized neuronal mitochondria. In mesencephalic DJ-1 KO cultures, there was a progressive loss of neuronal process extension. This was ameliorated by a pharmacological reagent, dexpramipexole, that binds to ATP synthase, closing a mitochondrial inner membrane leak and enhancing ATP synthase efficiency. ATP synthase c-subunit can form an uncoupling channel; we measured, therefore, ATP synthase F1 (ß subunit) and c-subunit protein levels. We found that ATP synthase ß subunit protein level in the DJ-1 KO neurons was approximately half that found in their wild-type counterparts, comprising a severe defect in ATP synthase stoichiometry and unmasking c-subunit. We suggest that DJ-1 enhances dopaminergic cell metabolism and growth by its regulation of ATP synthase protein components.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Proteína Desglicase DJ-1/metabolismo , Animais , Expressão Gênica , Humanos , Potencial da Membrana Mitocondrial/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Membranas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , Ligação Proteica , Proteína Desglicase DJ-1/genética , Ratos Sprague-Dawley
5.
FASEB J ; 33(8): 8925-8934, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31034784

RESUMO

Mitochondrial metabolic plasticity is a key adaptive mechanism in response to changes in cellular metabolic demand. Changes in mitochondrial metabolic efficiency have been linked to pathophysiological conditions, including cancer, neurodegeneration, and obesity. The ubiquitously expressed DJ-1 (Parkinsonism-associated deglycase) is known as a Parkinson's disease gene and an oncogene. The pleiotropic functions of DJ-1 include reactive oxygen species scavenging, RNA binding, chaperone activity, endocytosis, and modulation of major signaling pathways involved in cell survival and metabolism. Nevertheless, how these functions are linked to the role of DJ-1 in mitochondrial plasticity is not fully understood. In this study, we describe an interaction between DJ-1 and 14-3-3ß that regulates the localization of DJ-1, in a hypoxia-dependent manner, either to the cytosol or to mitochondria. This interaction acts as a modulator of mitochondrial metabolic efficiency and a switch between glycolysis and oxidative phosphorylation. Modulation of this novel molecular mechanism of mitochondrial metabolic efficiency is potentially involved in the neuroprotective function of DJ-1 as well as its role in proliferation of cancer cells.-Weinert, M., Millet, A., Jonas, E. A., Alavian, K. N. The mitochondrial metabolic function of DJ-1 is modulated by 14-3-3ß.


Assuntos
Proteínas 14-3-3/metabolismo , Mitocôndrias/metabolismo , Proteína Desglicase DJ-1/metabolismo , Animais , Encéfalo/metabolismo , Feminino , Glicólise , Células HEK293 , Humanos , Fosforilação Oxidativa , Ligação Proteica , Transporte Proteico , Ratos , Ratos Sprague-Dawley
6.
FASEB J ; 33(6): 6957-6961, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30862197

RESUMO

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is the most commonly used surgical treatment for Parkinson's disease (PD). The disease-modifying aspects of DBS at a cellular level are not fully understood, and the key question of the effect of DBS on the degeneration of the dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) remains to be answered. A major technical hurdle in determining any neuroprotective effect by DBS is its use in mid- to late-stage patients with PD when a majority of the DA neurons have been lost. In this work, we hypothesized that the long-term clinical benefits of DBS are, at least in part, due to a neuromodulatory effect on the SNpc neurons. These changes would affect cellular energetics and mitochondrial metabolism. We examined the number and volume of mitochondria as well as their vicinity to the DA presynaptic terminals postmortem caudate and putamen of 3 healthy individuals, 4 PD cases, and 3 DBS-treated patients. PD seems to have caused an increase in the mean distance between mitochondria and presynaptic terminals as well as a decrease in mean mitochondrial volume and numbers in DA projections. Although there was no difference in distance between mitochondria and presynaptic terminals of SNpc neurons in PD brains vs. DBS-treated brains, DBS treatment seemed to have inhibited or reversed the reduction in mitochondrial volume and numbers caused by PD. These results suggest enhanced metabolic plasticity leading to neuroprotection in the SNpc as a result of STN-DBS.-Mallach, A., Weinert, M., Arthur, J., Gveric, D., Tierney, T. S., Alavian, K. N. Post mortem examination of Parkinson's disease brains suggests decline in mitochondrial biomass, reversed by deep brain stimulation of subthalamic nucleus.


Assuntos
Encéfalo/patologia , Estimulação Encefálica Profunda , Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Biomassa , Encéfalo/anatomia & histologia , Humanos , Terminações Pré-Sinápticas , Sinapses
7.
J Mol Evol ; 85(5-6): 219-233, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29177973

RESUMO

ATP synthase is a complex universal enzyme responsible for ATP synthesis across all kingdoms of life. The F-type ATP synthase has been suggested to have evolved from two functionally independent, catalytic (F1) and membrane bound (Fo), ancestral modules. While the modular evolution of the synthase is supported by studies indicating independent assembly of the two subunits, the presence of intermediate assembly products suggests a more complex evolutionary process. We analyzed the phylogenetic profiles of the human mitochondrial proteins and bacterial transcription units to gain additional insight into the evolution of the F-type ATP synthase complex. In this study, we report the presence of intermediary modules based on the phylogenetic profiles of the human mitochondrial proteins. The two main intermediary modules comprise the α3ß3 hexamer in the F1 and the c-subunit ring in the Fo. A comprehensive analysis of bacterial transcription units of F1Fo ATP synthase revealed that while a long and constant order of F1Fo ATP synthase genes exists in a majority of bacterial genomes, highly conserved combinations of separate transcription units are present among certain bacterial classes and phyla. Based on our findings, we propose a model that includes the involvement of multiple modules in the evolution of F1Fo ATP synthase. The central and peripheral stalk subunits provide a link for the integration of the F1/Fo modules.


Assuntos
ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Trifosfato de Adenosina/biossíntese , Evolução Molecular , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Filogenia , Domínios Proteicos , Elementos Estruturais de Proteínas/genética , Transcrição Gênica/genética
8.
PeerJ ; 5: e3712, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28875072

RESUMO

Direct and indirect functional links between proteins as well as their interactions as part of larger protein complexes or common signaling pathways may be predicted by analyzing the correlation of their evolutionary patterns. Based on phylogenetic profiling, here we present a highly scalable and time-efficient computational framework for predicting linkages within the whole human proteome. We have validated this method through analysis of 3,697 human pathways and molecular complexes and a comparison of our results with the prediction outcomes of previously published co-occurrency model-based and normalization methods. Here we also introduce PrePhyloPro, a web-based software that uses our method for accurately predicting proteome-wide linkages. We present data on interactions of human mitochondrial proteins, verifying the performance of this software. PrePhyloPro is freely available at http://prephylopro.org/phyloprofile/.

9.
Cell Death Differ ; 24(11): 1963-1974, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28777375

RESUMO

ABT-737 is a pharmacological inhibitor of the anti-apoptotic activity of B-cell lymphoma-extra large (Bcl-xL) protein; it promotes apoptosis of cancer cells by occupying the BH3-binding pocket. We have shown previously that ABT-737 lowers cell metabolic efficiency by inhibiting ATP synthase activity. However, we also found that ABT-737 protects rodent brain from ischemic injury in vivo by inhibiting formation of the pro-apoptotic, cleaved form of Bcl-xL, ΔN-Bcl-xL. We now report that a high concentration of ABT-737 (1 µM), or a more selective Bcl-xL inhibitor WEHI-539 (5 µM) enhances glutamate-induced neurotoxicity while a low concentration of ABT-737 (10 nM) or WEHI-539 (10 nM) is neuroprotective. High ABT-737 markedly increased ΔN-Bcl-xL formation, aggravated glutamate-induced death and resulted in the loss of mitochondrial membrane potential and decline in ATP production. Although the usual cause of death by ABT-737 is thought to be related to activation of Bax at the outer mitochondrial membrane due to sequestration of Bcl-xL, we now find that low ABT-737 not only prevents Bax activation, but it also inhibits the decline in mitochondrial potential produced by glutamate toxicity or by direct application of ΔN-Bcl-xL to mitochondria. Loss of mitochondrial inner membrane potential is also prevented by cyclosporine A, implicating the mitochondrial permeability transition pore in death aggravated by ΔN-Bcl-xL. In keeping with this, we find that glutamate/ΔN-Bcl-xL-induced neuronal death is attenuated by depletion of the ATP synthase c-subunit. C-subunit depletion prevented depolarization of mitochondrial membranes in ΔN-Bcl-xL expressing cells and substantially prevented the morphological change in neurites associated with glutamate/ΔN-Bcl-xL insult. Our findings suggest that low ABT-737 or WEHI-539 promotes survival during glutamate toxicity by preventing the effect of ΔN-Bcl-xL on mitochondrial inner membrane depolarization, highlighting ΔN-Bcl-xL as an important therapeutic target in injured brain.


Assuntos
Ácido Glutâmico/toxicidade , Membranas Mitocondriais/metabolismo , Proteínas Mutantes/metabolismo , Neurotoxinas/toxicidade , Proteína bcl-X/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Animais , Compostos de Bifenilo/farmacologia , Morte Celular/efeitos dos fármacos , Ciclosporina/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Modelos Biológicos , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Nitrofenóis/farmacologia , Piperazinas/farmacologia , Subunidades Proteicas/metabolismo , Ratos Sprague-Dawley , Rodaminas/metabolismo , Sulfonamidas/farmacologia , Proteína bcl-X/metabolismo
10.
J Bioenerg Biomembr ; 49(1): 13-25, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26868013

RESUMO

Neurons experience high metabolic demand during such processes as synaptic vesicle recycling, membrane potential maintenance and Ca2+ exchange/extrusion. The energy needs of these events are met in large part by mitochondrial production of ATP through the process of oxidative phosphorylation. The job of ATP production by the mitochondria is performed by the F1FO ATP synthase, a multi-protein enzyme that contains a membrane-inserted portion, an extra-membranous enzymatic portion and an extensive regulatory complex. Although required for ATP production by mitochondria, recent findings have confirmed that the membrane-confined portion of the c-subunit of the ATP synthase also houses a large conductance uncoupling channel, the mitochondrial permeability transition pore (mPTP), the persistent opening of which produces osmotic dysregulation of the inner mitochondrial membrane, uncoupling of oxidative phosphorylation and cell death. Recent advances in understanding the molecular components of mPTP and its regulatory mechanisms have determined that decreased uncoupling occurs in states of enhanced mitochondrial efficiency; relative closure of mPTP therefore contributes to cellular functions as diverse as cardiac development and synaptic efficacy.


Assuntos
Canais Iônicos/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/biossíntese , Animais , Morte Celular , Humanos , Membranas Mitocondriais/química , Membranas Mitocondriais/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Fosforilação Oxidativa
11.
Handb Exp Pharmacol ; 240: 21-46, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27590224

RESUMO

Mitochondrial ATP generation by oxidative phosphorylation combines the stepwise oxidation by the electron transport chain (ETC) of the reducing equivalents NADH and FADH2 with the generation of ATP by the ATP synthase. Recent studies show that the ATP synthase is not only essential for the generation of ATP but may also contribute to the formation of the mitochondrial permeability transition pore (PTP). We present a model, in which the PTP is located within the c-subunit ring in the Fo subunit of the ATP synthase. Opening of the PTP was long associated with uncoupling of the ETC and the initiation of programmed cell death. More recently, it was shown that PTP opening may serve a physiologic role: it can transiently open to regulate mitochondrial signaling in mature cells, and it is open in the embryonic mouse heart. This review will discuss how the ATP synthase paradoxically lies at the center of both ATP generation and cell death.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial/fisiologia , ATPases Mitocondriais Próton-Translocadoras/fisiologia , Trifosfato de Adenosina/biossíntese , Animais , Apoptose , Transporte de Elétrons , Metabolismo Energético , Humanos , Poro de Transição de Permeabilidade Mitocondrial
13.
PLoS Biol ; 13(10): e1002282, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26506154

RESUMO

Exposure to extreme stress can trigger the development of major depressive disorder (MDD) as well as post-traumatic stress disorder (PTSD). The molecular mechanisms underlying the structural and functional alterations within corticolimbic brain regions, including the prefrontal cortex (PFC) and amygdala of individuals subjected to traumatic stress, remain unknown. In this study, we show that serum and glucocorticoid regulated kinase 1 (SGK1) expression is down-regulated in the postmortem PFC of PTSD subjects. Furthermore, we demonstrate that inhibition of SGK1 in the rat medial PFC results in helplessness- and anhedonic-like behaviors in rodent models. These behavioral changes are accompanied by abnormal dendritic spine morphology and synaptic dysfunction. Together, the results are consistent with the possibility that altered SGK1 signaling contributes to the behavioral and morphological phenotypes associated with traumatic stress pathophysiology.


Assuntos
Transtorno Depressivo Maior/etiologia , Repressão Enzimática , Proteínas Imediatamente Precoces/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transtornos de Estresse Pós-Traumáticos/metabolismo , Adulto , Animais , Comportamento Animal , Estudos de Coortes , Espinhas Dendríticas/enzimologia , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Feminino , Técnicas de Transferência de Genes , Hipocampo/enzimologia , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Proteínas Imediatamente Precoces/antagonistas & inibidores , Proteínas Imediatamente Precoces/genética , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Neurônios/enzimologia , Neurônios/patologia , Córtex Pré-Frontal/enzimologia , Córtex Pré-Frontal/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Ratos Sprague-Dawley , Transdução de Sinais , Transtornos de Estresse Pós-Traumáticos/patologia , Transtornos de Estresse Pós-Traumáticos/psicologia , Transmissão Sináptica , Bancos de Tecidos
14.
Pharmacol Res ; 99: 382-92, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25956324

RESUMO

Ion transport across the mitochondrial inner and outer membranes is central to mitochondrial function, including regulation of oxidative phosphorylation and cell death. Although essential for ATP production by mitochondria, recent findings have confirmed that the c-subunit of the ATP synthase also houses a large conductance uncoupling channel, the mitochondrial permeability transition pore (mPTP), the persistent opening of which produces osmotic dysregulation of the inner mitochondrial membrane and cell death. This review will discuss recent advances in understanding the molecular components of mPTP, its regulatory mechanisms and how these contribute directly to its physiological as well as pathological roles.


Assuntos
Trifosfato de Adenosina/metabolismo , Morte Celular/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Animais , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Poro de Transição de Permeabilidade Mitocondrial
15.
J Vis Exp ; (97)2015 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-25867749

RESUMO

Deep brain stimulation (DBS) surgery, targeting various regions of the brain such as the basal ganglia, thalamus, and subthalamic regions, is an effective treatment for several movement disorders that have failed to respond to medication. Recent progress in the field of DBS surgery has begun to extend the application of this surgical technique to other conditions as diverse as morbid obesity, depression and obsessive compulsive disorder. Despite these expanding indications, little is known about the underlying physiological mechanisms that facilitate the beneficial effects of DBS surgery. One approach to this question is to perform gene expression analysis in neurons that receive the electrical stimulation. Previous studies have shown that neurogenesis in the rat dentate gyrus is elicited in DBS targeting of the anterior nucleus of the thalamus(1). DBS surgery targeting the ATN is used widely for treatment refractory epilepsy. It is thus of much interest for us to explore the transcriptional changes induced by electrically stimulating the ATN. In this manuscript, we describe our methodologies for stereotactically-guided DBS surgery targeting the ATN in adult male Wistar rats. We also discuss the subsequent steps for tissue dissection, RNA isolation, cDNA preparation and quantitative RT-PCR for measuring gene expression changes. This method could be applied and modified for stimulating the basal ganglia and other regions of the brain commonly clinically targeted. The gene expression study described here assumes a candidate target gene approach for discovering molecular players that could be directing the mechanism for DBS.


Assuntos
Núcleos Anteriores do Tálamo/cirurgia , Estimulação Encefálica Profunda/métodos , Hipocampo/fisiologia , Animais , Dissecação/métodos , Expressão Gênica/fisiologia , Masculino , Ratos , Ratos Wistar , Técnicas Estereotáxicas , Transcriptoma , Resultado do Tratamento
16.
Circ Res ; 116(10): 1680-90, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25767292

RESUMO

RATIONALE: Iron deficiency without anemia is prevalent in patients with idiopathic pulmonary arterial hypertension and associated with reduced exercise capacity and survival. OBJECTIVES: We hypothesized that iron deficiency is involved in the pathogenesis of pulmonary hypertension and iron replacement is a possible therapeutic strategy. METHODS AND RESULTS: Rats were fed an iron-deficient diet (IDD, 7 mg/kg) and investigated for 4 weeks. Iron deficiency was evident from depleted iron stores (decreased liver, serum iron, and ferritin), reduced erythropoiesis, and significantly decreased transferrin saturation and lung iron stores after 2 weeks IDD. IDD rats exhibited profound pulmonary vascular remodeling with prominent muscularization, medial hypertrophy, and perivascular inflammatory cell infiltration, associated with raised pulmonary artery pressure and right ventricular hypertrophy. IDD rat lungs demonstrated increased expression of hypoxia-induced factor-1α and hypoxia-induced factor-2α, nuclear factor of activated T cells and survivin, and signal transducers and activators of transcription-3 activation, which promote vascular cell proliferation and resistance to apoptosis. Biochemical examination showed reduced mitochondrial complex I activity and mitochondrial membrane hyperpolarization in mitochondria from IDD rat pulmonary arteries. Along with upregulation of the glucose transporter, glucose transporter 1, and glycolytic genes, hk1 and pdk1, lung fluorine-18-labeled 2-fluoro-2-deoxyglucose ligand uptake was significantly increased in IDD rats. The hemodynamic and pulmonary vascular remodeling were reversed by iron replacement (ferric carboxymaltose, 75 mg/kg) and attenuated in the presence of iron deficiency by dichloroacetate and imatinib, 2 putative treatments explored for pulmonary arterial hypertension that target aerobic glycolysis and proliferation, respectively. CONCLUSIONS: These data suggest a major role for iron in pulmonary vascular homeostasis and support the clinical evaluation of iron replacement in patients with pulmonary hypertension.


Assuntos
Pressão Arterial , Deficiências Nutricionais/complicações , Hipertensão Pulmonar/etiologia , Deficiências de Ferro , Artéria Pulmonar/fisiopatologia , Remodelação Vascular , Animais , Anti-Hipertensivos/farmacologia , Pressão Arterial/efeitos dos fármacos , Benzamidas/farmacologia , Proliferação de Células , Deficiências Nutricionais/sangue , Deficiências Nutricionais/tratamento farmacológico , Ácido Dicloroacético/farmacologia , Modelos Animais de Doenças , Eritropoese , Compostos Férricos/farmacologia , Ferritinas/sangue , Glicólise , Hematínicos/farmacologia , Homeostase , Hipertensão Pulmonar/sangue , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/prevenção & controle , Hipertrofia Ventricular Direita/sangue , Hipertrofia Ventricular Direita/etiologia , Hipertrofia Ventricular Direita/fisiopatologia , Mesilato de Imatinib , Ferro/sangue , Fígado/metabolismo , Masculino , Maltose/análogos & derivados , Maltose/farmacologia , Piperazinas/farmacologia , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Pirimidinas/farmacologia , Ratos Sprague-Dawley , Transdução de Sinais , Fatores de Tempo , Transferrina/metabolismo , Remodelação Vascular/efeitos dos fármacos
17.
J Vis Exp ; (96)2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25741798

RESUMO

Degeneration of mesencephalic dopaminergic (mesDA) neurons is the pathological hallmark of Parkinson's diseae. Study of the biological processes involved in physiological functions and vulnerability and death of these neurons is imparative to understanding the underlying causes and unraveling the cure for this common neurodegenerative disorder. Primary cultures of mesDA neurons provide a tool for investigation of the molecular, biochemical and electrophysiological properties, in order to understand the development, long-term survival and degeneration of these neurons during the course of disease. Here we present a detailed method for the isolation, culturing and maintenance of midbrain dopaminergic neurons from E12.5 mouse (or E14.5 rat) embryos. Optimized cell culture conditions in this protocol result in presence of axonal and dendritic projections, synaptic connections and other neuronal morphological properties, which make the cultures suitable for study of the physiological, cell biological and molecular characteristics of this neuronal population.


Assuntos
Técnicas de Cultura de Células/métodos , Neurônios Dopaminérgicos/citologia , Mesencéfalo/citologia , Animais , Camundongos , Ratos
18.
Mol Pharmacol ; 87(1): 1-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25332381

RESUMO

Inefficiency of oxidative phosphorylation can result from futile leak conductance through the inner mitochondrial membrane. Stress or injury may exacerbate this leak conductance, putting cells, and particularly neurons, at risk of dysfunction and even death when energy demand exceeds cellular energy production. Using a novel method, we have recently described an ion conductance consistent with mitochondrial permeability transition pore (mPTP) within the c-subunit of the ATP synthase. Excitotoxicity, reactive oxygen species-producing stimuli, or elevated mitochondrial matrix calcium opens the channel, which is inhibited by cyclosporine A and ATP/ADP. Here we show that ATP and the neuroprotective drug dexpramipexole (DEX) inhibited an ion conductance consistent with this c-subunit channel (mPTP) in brain-derived submitochondrial vesicles (SMVs) enriched for F1FO ATP synthase (complex V). Treatment of SMVs with urea denatured extramembrane components of complex V, eliminated DEX- but not ATP-mediated current inhibition, and reduced binding of [(14)C]DEX. Direct effects of DEX on the synthesis and hydrolysis of ATP by complex V suggest that interaction of the compound with its target results in functional conformational changes in the enzyme complex. [(14)C]DEX bound specifically to purified recombinant b and oligomycin sensitivity-conferring protein subunits of the mitochondrial F1FO ATP synthase. Previous data indicate that DEX increased the efficiency of energy production in cells, including neurons. Taken together, these studies suggest that modulation of a complex V-associated inner mitochondrial membrane current is metabolically important and may represent an avenue for the development of new therapeutics for neurodegenerative disorders.


Assuntos
Benzotiazóis/farmacologia , Ciclosporina/farmacologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Encéfalo/citologia , Encéfalo/enzimologia , Humanos , Membranas Mitocondriais/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial , Pramipexol
19.
Antioxid Redox Signal ; 22(2): 93-108, 2015 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24787232

RESUMO

AIMS: B-cell lymphoma-extra large (Bcl-xL) protects survival in dividing cells and developing neurons, but was not known to regulate growth. Growth and synapse formation are indispensable for neuronal survival in development, inextricably linking these processes. We have previously shown that, during synaptic plasticity, Bcl-xL produces changes in synapse number, size, activity, and mitochondrial metabolism. In this study, we determine whether Bcl-xL is required for healthy neurite outgrowth and whether neurite outgrowth is necessary for survival in developing neurons in the presence or absence of stress. RESULTS: Depletion of endogenous Bcl-xL impairs neurite outgrowth in hippocampal neurons followed by delayed cell death which is dependent on upregulation of death receptor 6 (DR6), a molecule that regulates axonal pruning. Under hypoxic conditions, Bcl-xL-depleted neurons demonstrate increased vulnerability to neuronal process loss and to death compared with hypoxic controls. Endogenous DR6 expression and upregulation during hypoxia are associated with worsened neurite damage; depletion of DR6 partially rescues neuronal process loss, placing DR6 downstream of the effects of Bcl-xL on neuronal process outgrowth and protection. In vivo ischemia produces early increases in DR6, suggesting a role for DR6 in brain injury. INNOVATION: We suggest that DR6 levels are usually suppressed by Bcl-xL; Bcl-xL depletion leads to upregulation of DR6, failure of neuronal outgrowth in nonstressed cells, and exacerbation of hypoxia-induced neuronal injury. CONCLUSION: Bcl-xL regulates neuronal outgrowth during development and protects neurites from hypoxic insult, as opposed by DR6. Factors that enhance neurite formation may protect neurons against hypoxic injury or neurodegenerative stimuli.


Assuntos
Hipocampo/citologia , Hipocampo/metabolismo , Neuritos/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Proteína bcl-X/metabolismo , Animais , Células Cultivadas , Feminino , Immunoblotting , Marcação In Situ das Extremidades Cortadas , Gravidez , Ratos , Proteína bcl-X/genética
20.
Front Physiol ; 5: 355, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25278904

RESUMO

Accepted features of neurodegenerative disease include mitochondrial and protein folding dysfunction and activation of pro-death factors. Neurons that experience high metabolic demand or those found in organisms with genetic mutations in proteins that control cell stress may be more susceptible to aging and neurodegenerative disease. In neurons, events that normally promote growth, synapse formation, and plasticity are also often deployed to control neurotoxicity. Such protective strategies are coordinated by master stress-fighting proteins. One such specialized protein is the anti-cell death Bcl-2 family member Bcl-xL, whose myriad death-protecting functions include enhancement of bioenergetic efficiency, prevention of mitochondrial permeability transition channel activity, protection from mitochondrial outer membrane permeabilization (MOMP) to pro-apoptotic factors, and improvement in the rate of vesicular trafficking. Synapse formation and normal neuronal activity provide protection from neuronal death. Therefore, Bcl-xL brings about synapse formation as a neuroprotective strategy. In this review we will consider how this multi-functional master regulator protein uses many strategies to enhance synaptic and neuronal function and thus counteracts neurodegenerative stimuli.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...