Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 127(23): 235701, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34936777

RESUMO

It has recently been discovered that random quantum circuits provide an avenue to realize rich entanglement phase diagrams, which are hidden to standard expectation values of operators. Here we study (2+1)D random circuits with random Clifford unitary gates and measurements designed to stabilize trivial area law and topologically ordered phases. With competing single qubit Pauli-Z and toric code stabilizer measurements, in addition to random Clifford unitaries, we find a phase diagram involving a tricritical point that maps to (2+1)D percolation, a possibly stable critical phase, topologically ordered, trivial, and volume law phases, and lines of critical points separating them. With Pauli-Y single qubit measurements instead, we find an anisotropic self-dual tricritical point, with dynamical exponent z≈1.46, exhibiting logarithmic violation of the area law and an anomalous exponent for the topological entanglement entropy, which thus appears distinct from any known percolation fixed point. The phase diagram also hosts a measurement-induced volume law entangled phase in the absence of unitary dynamics.

2.
Sci Rep ; 9(1): 7471, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31097782

RESUMO

In the presence of strong spin-independent interactions and spin-orbit coupling, we show that the spinor Bose liquid confined to one spatial dimension undergoes an interaction- or density-tuned quantum phase transition similar to one theoretically proposed for itinerant magnetic solid-state systems. The order parameter describes broken Z2 inversion symmetry, with the ordered phase accompanied by non-vanishing momentum which is generated by fluctuations of an emergent dynamical gauge field at the phase transition. This quantum phase transition has dynamical critical exponent z ≃ 2, typical of a Lifshitz transition, but is described by a nontrivial interacting fixed point. From direct numerical simulation of the microscopic model, we extract previously unknown critical exponents for this fixed point. Our model describes a realistic situation of 1D ultracold atoms with Raman-induced spin-orbit coupling, establishing this system as a platform for studying exotic critical behavior of the Hertz-Millis type.

3.
Phys Rev Lett ; 119(21): 217701, 2017 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-29219409

RESUMO

Parafermionic zero modes are a novel set of excitations displaying non-Abelian statistics somewhat richer than that of Majorana modes. These modes are predicted to occur when nearby fractional quantum Hall edge states are gapped by an interposed superconductor. Despite substantial experimental progress, we argue that the necessary crossed Andreev reflection in this arrangement is a challenging milestone to reach. We propose a superconducting quantum dot array structure on a fractional quantum Hall edge that can lead to parafermionic zero modes from coherent superconducting forward scattering on a quantum Hall edge. Such coherent forward scattering has already been demonstrated in recent experiments. We show that for a spin-singlet superconductor interacting with loops of spin unpolarized 2/3 fractional quantum edge, even an array size of order 10 should allow one to systematically tune into a parafermionic degeneracy.

4.
Phys Rev Lett ; 118(22): 227002, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28621990

RESUMO

We investigate the phase diagram of a three-dimensional, time-reversal symmetric topological superconductor in the presence of charge impurities and random s-wave pairing. Combining complimentary field theoretic and numerical methods, we show that the quantum phase transition between two topologically distinct paired states (or thermal insulators), described by thermal Dirac semimetal, remains unaffected in the presence of sufficiently weak generic randomness. At stronger disorder, however, these two phases are separated by an intervening thermal metallic phase of diffusive Majorana fermions. We show that across the insulator-insulator and metal-insulator transitions, normalized thermal conductance displays single parameter scaling, allowing us to numerically extract the critical exponents across them. The pertinence of our study in strong spin-orbit coupled, three-dimensional doped narrow gap semiconductors, such as Cu_{x}Bi_{2}Se_{3}, is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...