Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203675

RESUMO

Recently, we found that the deletion of TRPC5 leads to increased inflammation and pain-related behaviour in two animal models of arthritis. (-)-Englerin A (EA), an extract from the East African plant Phyllanthus engleri has been identified as a TRPC4/5 agonist. Here, we studied whether or not EA has any anti-inflammatory and analgesic properties via TRPC4/5 in the carrageenan model of inflammation. We found that EA treatment in CD1 mice inhibited thermal hyperalgesia and mechanical allodynia in a dose-dependent manner. Furthermore, EA significantly reduced the volume of carrageenan-induced paw oedema and the mass of the treated paws. Additionally, in dorsal root ganglion (DRG) neurons cultured from WT 129S1/SvIm mice, EA induced a dose-dependent cobalt uptake that was surprisingly preserved in cultured DRG neurons from 129S1/SvIm TRPC5 KO mice. Likewise, EA-induced anti-inflammatory and analgesic effects were preserved in the carrageenan model in animals lacking TRPC5 expression or in mice treated with TRPC4/5 antagonist ML204.This study demonstrates that while EA activates a sub-population of DRG neurons, it induces a novel TRPC4/5-independent analgesic and anti-inflammatory effect in vivo. Future studies are needed to elucidate the molecular and cellular mechanisms underlying EA's anti-inflammatory and analgesic effects.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Sesquiterpenos de Guaiano/farmacologia , Canais de Cátion TRPC/metabolismo , Analgésicos/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Carragenina , Células Cultivadas , Cobalto/metabolismo , Modelos Animais de Doenças , Edema/patologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Hiperalgesia/tratamento farmacológico , Inflamação/complicações , Inflamação/tratamento farmacológico , Inflamação/patologia , Masculino , Camundongos Knockout , Dor/complicações , Dor/tratamento farmacológico , Dor/patologia , Fenótipo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Sesquiterpenos de Guaiano/uso terapêutico
2.
Osteoarthr Cartil Open ; 2(4): 100119, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33381767

RESUMO

INTRODUCTION: Osteo-arthritis (OA) involves joint degradation and usually pain; with mechanisms poorly understood and few treatment options. There is evidence that the transient receptor potential canonical 5 (TRPC5) mRNA expression is reduced in OA patients' synovia. Here we examine the profile of TRPC5 in DRG and involvement in murine models of OA. DESIGN: TRPC5 KO mice were subjected to partial meniscectomy (PMNX) or injected with monoiodoacetate (MIA) and pain-related behaviours were determined. Knee joint pathological scores were analysed and gene expression changes in ipsilateral synovium and dorsal root ganglia (DRG) determined. c-Fos protein expression in the ipsilateral dorsal horn of the spinal cord was quantified. RESULTS: TRPC5 KO mice developed a discrete enhanced pain-related phenotype. In the MIA model, the pain-related phenotype correlated with c-Fos expression in the dorsal horn and increased expression of nerve injury markers ATF3, CSF1 and galanin in the ipsilateral DRG. There were negligible differences in the joint pathology between WT and TRPC5 KO mice, however detailed gene expression analysis determined increased expression of the mast cell marker CD117 as well as extracellular matrix remodelling proteinases MMP2, MMP13 and ADAMTS4 in MIA-treated TRPC5 KO mice. TRPC5 expression was defined to sensory subpopulations in DRG. CONCLUSIONS: Deletion of TRPC5 receptor signalling is associated with exacerbation of pain-like behaviour in OA which correlates with increased expression of enzymes involved in extracellular remodelling, inflammatory cells in the synovium and increased neuronal activation and injury in DRG. Together, these results identify a modulating role for TRPC5 in OA-induced pain-like behaviours.

3.
Nat Cell Biol ; 21(4): 430-441, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30936475

RESUMO

Growth plate cartilage contributes to the generation of a large variety of shapes and sizes of skeletal elements in the mammalian system. The removal of cartilage and how this process regulates bone shape are not well understood. Here we identify a non-bone-resorbing osteoclast subtype termed vessel-associated osteoclast (VAO). Endothelial cells at the bone/cartilage interface support VAOs through a RANKL-RANK signalling mechanism. In contrast to classical bone-associated osteoclasts, VAOs are dispensable for cartilage resorption and regulate anastomoses of type H vessels. Remarkably, proteinases including matrix metalloproteinase-9 (Mmp9) released from endothelial cells, not osteoclasts, are essential for resorbing cartilage to lead directional bone growth. Importantly, disrupting the orientation of angiogenic blood vessels by misdirecting them results in contorted bone shape. This study identifies proteolytic functions of endothelial cells in cartilage and provides a framework to explore tissue-lytic features of blood vessels in fracture healing, arthritis and cancer.


Assuntos
Cartilagem/enzimologia , Endotélio/enzimologia , Osteoclastos/fisiologia , Osteogênese , Peptídeo Hidrolases/metabolismo , Animais , Reabsorção Óssea , Osso e Ossos/irrigação sanguínea , Osso e Ossos/citologia , Cartilagem/metabolismo , Endotélio/metabolismo , Lâmina de Crescimento/anatomia & histologia , Camundongos Endogâmicos C57BL , Osteoclastos/classificação , Osteoclastos/metabolismo
4.
J Am Heart Assoc ; 6(6)2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28655735

RESUMO

BACKGROUND: Reliable measurement of blood pressure in conscious mice is essential in cardiovascular research. Telemetry, the "gold-standard" technique, is invasive and expensive and therefore tail-cuff, a noninvasive alternative, is widely used. However, tail-cuff requires handling and restraint during measurement, which may cause stress affecting blood pressure and undermining reliability of the results. METHODS AND RESULTS: C57Bl/6J mice were implanted with radio-telemetry probes to investigate the effects of the steps of the tail-cuff technique on central blood pressure, heart rate, and temperature. This included comparison of handling techniques, operator's sex, habituation, and influence of hypertension induced by angiotensin II. Direct comparison of measurements obtained by telemetry and tail-cuff were made in the same mouse. The results revealed significant increases in central blood pressure, heart rate, and core body temperature from baseline following handling interventions without significant difference among the different handling technique, habituation, or sex of the investigator. Restraint induced the largest and sustained increase in cardiovascular parameters and temperature. The tail-cuff readings significantly underestimated those from simultaneous telemetry recordings; however, "nonsimultaneous" telemetry, obtained in undisturbed mice, were similar to tail-cuff readings obtained in undisturbed mice on the same day. CONCLUSIONS: This study reveals that the tail-cuff technique underestimates the core blood pressure changes that occur simultaneously during the restraint and measurement phases. However, the measurements between the 2 techniques are similar when tail-cuff readings are compared with telemetry readings in the nondisturbed mice. The differences between the simultaneous recordings by the 2 techniques should be recognized by researchers.


Assuntos
Determinação da Pressão Arterial/instrumentação , Pressão Sanguínea , Hipertensão/diagnóstico , Cauda/irrigação sanguínea , Telemetria , Angiotensina II , Animais , Comportamento Animal , Determinação da Pressão Arterial/efeitos adversos , Determinação da Pressão Arterial/métodos , Regulação da Temperatura Corporal , Modelos Animais de Doenças , Feminino , Habituação Psicofisiológica , Manobra Psicológica , Frequência Cardíaca , Humanos , Hipertensão/induzido quimicamente , Hipertensão/fisiopatologia , Hipertensão/psicologia , Masculino , Camundongos Endogâmicos C57BL , Pletismografia/instrumentação , Valor Preditivo dos Testes , Fluxo Sanguíneo Regional , Reprodutibilidade dos Testes , Restrição Física/efeitos adversos , Estresse Psicológico/etiologia , Estresse Psicológico/fisiopatologia , Fatores de Tempo
5.
Sci Rep ; 7(1): 2338, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28539583

RESUMO

Transient receptor potential canonical 5 (TRPC5), a calcium-permeable, non-selective cation channel is expressed in the periphery, but there is limited knowledge of its regulatory roles in vivo. Endogenous modulators of TRPC5 include a range of phospholipids that have an established role in liver disease, including lysophosphatidylcholine (LPC). Cholestasis is characterized by impairment of excretion of bile acids, leading to elevation of hepatic bile acids. We investigated the contribution of TRPC5 in a murine model of cholestasis. Wild-type (WT) and TRPC5 knock-out (KO) mice were fed a diet supplemented with 0.5% cholic acid (CA) for 21 days. CA-diet supplementation resulted in enlargement of the liver in WT mice, which was ameliorated in TRPC5 KO mice. Hepatic bile acid and lipid content was elevated in WT mice, with a reduction observed in TRPC5 KO mice. Consistently, liver enzymes were significantly increased in cholestatic WT mice and significantly blunted in TRPC5 KO mice. Localized dyslipidaemia, secondary to cholestasis, was investigated utilizing a selected lipid analysis. This revealed significant perturbations in the lipid profile following CA-diet feeding, with increased cholesterol, triglycerides and phospholipids, in WT, but not TRPC5 KO mice. Our results suggest that activation of TRPC5 contributes to the development of cholestasis and associated dyslipidemia. Modulation of TRPC5 activity may present as a novel therapeutic target for liver disease.


Assuntos
Colestase/metabolismo , Dislipidemias/metabolismo , Fígado/metabolismo , Canais de Cátion TRPC/fisiologia , Animais , Ácidos e Sais Biliares/sangue , Ácidos e Sais Biliares/metabolismo , Colestase/genética , Colesterol 7-alfa-Hidroxilase/genética , Colesterol 7-alfa-Hidroxilase/metabolismo , Dislipidemias/genética , Expressão Gênica , Lipídeos/análise , Fígado/patologia , Masculino , Camundongos Endogâmicos ICR , Camundongos Knockout , Canais de Cátion TRPC/deficiência , Canais de Cátion TRPC/genética
6.
Circulation ; 136(4): 367-383, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28446517

RESUMO

BACKGROUND: Research into the therapeutic potential of α-calcitonin gene-related peptide (α-CGRP) has been limited because of its peptide nature and short half-life. Here, we evaluate whether a novel potent and long-lasting (t½ ≥7 hours) acylated α-CGRP analogue (αAnalogue) could alleviate and reverse cardiovascular disease in 2 distinct murine models of hypertension and heart failure in vivo. METHODS: The ability of the αAnalogue to act selectively via the CGRP pathway was shown in skin by using a CGRP receptor antagonist. The effect of the αAnalogue on angiotensin II-induced hypertension was investigated over 14 days. Blood pressure was measured by radiotelemetry. The ability of the αAnalogue to modulate heart failure was studied in an abdominal aortic constriction model of murine cardiac hypertrophy and heart failure over 5 weeks. Extensive ex vivo analysis was performed via RNA analysis, Western blot, and histology. RESULTS: The angiotensin II-induced hypertension was attenuated by cotreatment with the αAnalogue (50 nmol·kg-1·d-1, SC, at a dose selected for lack of long-term hypotensive effects at baseline). The αAnalogue protected against vascular, renal, and cardiac dysfunction, characterized by reduced hypertrophy and biomarkers of fibrosis, remodeling, inflammation, and oxidative stress. In a separate study, the αAnalogue reversed angiotensin II-induced hypertension and associated vascular and cardiac damage. The αAnalogue was effective over 5 weeks in a murine model of cardiac hypertrophy and heart failure. It preserved heart function, assessed by echocardiography, while protecting against adverse cardiac remodeling and apoptosis. Moreover, treatment with the αAnalogue was well tolerated with neither signs of desensitization nor behavioral changes. CONCLUSIONS: These findings, in 2 distinct models, provide the first evidence for the therapeutic potential of a stabilized αAnalogue, by mediating (1) antihypertensive effects, (2) attenuating cardiac remodeling, and (3) increasing angiogenesis and cell survival to protect against and limit damage associated with the progression of cardiovascular diseases. This indicates the therapeutic potential of the CGRP pathway and the possibility that this injectable CGRP analogue may be effective in cardiac disease.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/análogos & derivados , Peptídeo Relacionado com Gene de Calcitonina/uso terapêutico , Cardiomegalia/tratamento farmacológico , Cardiotônicos/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Hipertensão/tratamento farmacológico , Animais , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Velocidade do Fluxo Sanguíneo/fisiologia , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiotônicos/farmacologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Hipertensão/metabolismo , Hipertensão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Insuficiência de Múltiplos Órgãos/metabolismo , Insuficiência de Múltiplos Órgãos/patologia , Insuficiência de Múltiplos Órgãos/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia
7.
Ann Rheum Dis ; 76(1): 252-260, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27165180

RESUMO

OBJECTIVE: Transient receptor potential canonical 5 (TRPC5) is functionally expressed on a range of cells including fibroblast-like synoviocytes, which play an important role in arthritis. A role for TRPC5 in inflammation has not been previously shown in vivo. We investigated the contribution of TRPC5 in arthritis. METHODS: Male wild-type and TRPC5 knockout (KO) mice were used in a complete Freund's adjuvant (CFA)-induced unilateral arthritis model, assessed over 14 days. Arthritis was determined by measurement of knee joint diameter, hindlimb weightbearing asymmetry and pain behaviour. Separate studies involved chronic pharmacological antagonism of TRPC5 channels. Synovium from human postmortem control and inflammatory arthritis samples were investigated for TRPC5 gene expression. RESULTS: At baseline, no differences were observed. CFA-induced arthritis resulted in increased synovitis in TRPC5 KO mice assessed by histology. Additionally, TRPC5 KO mice demonstrated reduced ispilateral weightbearing and nociceptive thresholds (thermal and mechanical) following CFA-induced arthritis. This was associated with increased mRNA expression of inflammatory mediators in the ipsilateral synovium and increased concentration of cytokines in synovial lavage fluid. Chronic treatment with ML204, a TRPC5 antagonist, augmented weightbearing asymmetry, secondary hyperalgesia and cytokine concentrations in the synovial lavage fluid. Synovia from human inflammatory arthritis demonstrated a reduction in TRPC5 mRNA expression. CONCLUSIONS: Genetic deletion or pharmacological blockade of TRPC5 results in an enhancement in joint inflammation and hyperalgesia. Our results suggest that activation of TRPC5 may be associated with an endogenous anti-inflammatory/analgesic pathway in inflammatory joint conditions.


Assuntos
Artrite Experimental/metabolismo , Hiperalgesia/metabolismo , Sinovite/metabolismo , Canais de Cátion TRPC/fisiologia , Idoso , Idoso de 80 Anos ou mais , Animais , Artrite Experimental/complicações , Artrite Experimental/patologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Comportamento Animal , Edema/metabolismo , Feminino , Regulação da Expressão Gênica/fisiologia , Humanos , Hiperalgesia/etiologia , Hiperalgesia/patologia , Indóis/farmacologia , Masculino , Camundongos Knockout , Pessoa de Meia-Idade , Neovascularização Patológica/metabolismo , Osteoartrite/metabolismo , Osteoartrite/patologia , Piperidinas/farmacologia , RNA Mensageiro/genética , Membrana Sinovial/irrigação sanguínea , Sinovite/etiologia , Sinovite/patologia , Canais de Cátion TRPC/antagonistas & inibidores , Canais de Cátion TRPC/biossíntese , Canais de Cátion TRPC/deficiência , Canais de Cátion TRPC/genética
8.
Arthritis Res Ther ; 18: 7, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26754745

RESUMO

BACKGROUND: The effect of cold temperature on arthritis symptoms is unclear. The aim of this study was to investigate how environmental cold affects pain and blood flow in mono-arthritic mice, and examine a role for transient receptor potential ankyrin 1 (TRPA1), a ligand-gated cation channel that can act as a cold sensor. METHODS: Mono-arthritis was induced by unilateral intra-articular injection of complete Freund's adjuvant (CFA) in CD1 mice, and in mice either lacking TRPA1 (TRPA1 KO) or respective wildtypes (WT). Two weeks later, nociception and joint blood flow were measured following exposure to 10 °C (1 h) or room temperature (RT). Primary mechanical hyperalgesia in the knee was measured by pressure application apparatus; secondary mechanical hyperalgesia by automated von Frey system; thermal hyperalgesia by Hargreaves technique, and weight bearing by the incapacitance test. Joint blood flow was recorded by full-field laser perfusion imager (FLPI) and using clearance of (99m)Technetium. Blood flow was assessed after pretreatment with antagonists of either TRPA1 (HC-030031), substance P neurokinin 1 (NK1) receptors (SR140333) or calcitonin gene-related peptide (CGRP) (CGRP8-37). TRPA1, TAC-1 and CGRP mRNA levels were examined in dorsal root ganglia, synovial membrane and patellar cartilage samples. RESULTS: Cold exposure caused bilateral primary mechanical hyperalgesia 2 weeks after CFA injection, in a TRPA1-dependent manner. In animals maintained at RT, clearance techniques and FLPI showed that CFA-treated joints exhibited lower blood flow than saline-treated joints. In cold-exposed animals, this reduction in blood flow disappears, and increased blood flow in the CFA-treated joint is observed using FLPI. Cold-induced increased blood flow in CFA-treated joints was blocked by HC-030031 and not observed in TRPA1 KOs. Cold exposure increased TRPA1 mRNA levels in patellar cartilage, whilst reducing it in synovial membranes from CFA-treated joints. CONCLUSIONS: We provide evidence that environmental cold exposure enhances pain and increases blood flow in a mono-arthritis model. These changes are dependent on TRPA1. Thus, TRPA1 may act locally within the joint to influence blood flow via sensory nerves, in addition to its established nociceptive actions.


Assuntos
Artrite Experimental/metabolismo , Velocidade do Fluxo Sanguíneo/fisiologia , Temperatura Baixa/efeitos adversos , Adjuvante de Freund/toxicidade , Articulações/metabolismo , Canais de Potencial de Receptor Transitório/biossíntese , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/patologia , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Adjuvante de Freund/administração & dosagem , Membro Posterior/efeitos dos fármacos , Membro Posterior/metabolismo , Membro Posterior/patologia , Injeções Intra-Articulares , Articulações/efeitos dos fármacos , Articulações/patologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório/deficiência
9.
FASEB J ; 29(10): 4285-98, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26136480

RESUMO

Transient receptor potential vanilloid 1 (TRPV1) is involved in sensory nerve nociceptive signaling. Recently, it has been discovered that TRPV1 receptors also regulate basal body temperature in multiple species from mice to humans. In the present study, we investigated whether TRPV1 modulates basal sympathetic nervous system (SNS) activity. C57BL6/J wild-type (WT) mice and TRPV1 knockout (KO) mice were implanted with radiotelemetry probes for measurement of core body temperature. AMG9810 (50 mg/kg) or vehicle (2% DMSO/5% Tween 80/10 ml/kg saline) was injected intraperitoneally. Adrenoceptor antagonists or vehicle (5 ml/kg saline) was injected subcutaneously. In WT mice, the TRPV1 antagonist, AMG9810, caused significant hyperthermia, associated with increased noradrenaline concentrations in brown adipose tissue. The hyperthermia was significantly attenuated by the ß-adrenoceptor antagonist propranolol, the mixed α-/ß-adrenoceptor antagonist labetalol, and the α1-adrenoceptor antagonist prazosin. TRPV1 KO mice have a normal basal body temperature, indicative of developmental compensation. d-Amphetamine (potent sympathomimetic) caused hyperthermia in WT mice, which was reduced in TRPV1 KO mice, suggesting a decreased sympathetic drive in KOs. This study provides new evidence that TRPV1 controls thermoregulation upstream of the SNS, providing a potential therapeutic target for sympathetic hyperactivity thermoregulatory disorders.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Temperatura Corporal/fisiologia , Sistema Nervoso Simpático/fisiologia , Canais de Cátion TRPV/fisiologia , Acrilamidas/administração & dosagem , Acrilamidas/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 1/administração & dosagem , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Antagonistas Adrenérgicos beta/administração & dosagem , Antagonistas Adrenérgicos beta/farmacologia , Animais , Temperatura Corporal/genética , Regulação da Temperatura Corporal/genética , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Febre/genética , Febre/fisiopatologia , Humanos , Injeções Intraperitoneais , Injeções Subcutâneas , Labetalol/administração & dosagem , Labetalol/farmacologia , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Prazosina/administração & dosagem , Prazosina/farmacologia , Propranolol/administração & dosagem , Propranolol/farmacologia , Receptores Adrenérgicos alfa 1/fisiologia , Receptores Adrenérgicos beta/fisiologia , Sistema Nervoso Simpático/metabolismo , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/genética , Telemetria/métodos
10.
Nat Commun ; 5: 5732, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25501034

RESUMO

The cold-induced vascular response, consisting of vasoconstriction followed by vasodilatation, is critical for protecting the cutaneous tissues against cold injury. Whilst this physiological reflex response is historic knowledge, the mechanisms involved are unclear. Here by using a murine model of local environmental cold exposure, we show that TRPA1 acts as a primary vascular cold sensor, as determined through TRPA1 pharmacological antagonism or gene deletion. The initial cold-induced vasoconstriction is mediated via TRPA1-dependent superoxide production that stimulates α2C-adrenoceptors and Rho-kinase-mediated MLC phosphorylation, downstream of TRPA1 activation. The subsequent restorative blood flow component is also dependent on TRPA1 activation being mediated by sensory nerve-derived dilator neuropeptides CGRP and substance P, and also nNOS-derived NO. The results allow a new understanding of the importance of TRPA1 in cold exposure and provide impetus for further research into developing therapeutic agents aimed at the local protection of the skin in disease and adverse climates.


Assuntos
Hipotermia/metabolismo , Receptores Adrenérgicos alfa/genética , Pele/irrigação sanguínea , Canais de Potencial de Receptor Transitório/genética , Vasoconstrição/genética , Acetanilidas/farmacologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/genética , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Temperatura Baixa/efeitos adversos , Regulação da Expressão Gênica , Membro Posterior , Hipotermia/etiologia , Hipotermia/genética , Hipotermia/patologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Fosforilação , Purinas/farmacologia , Receptores Adrenérgicos alfa/metabolismo , Transdução de Sinais , Pele/metabolismo , Pele/patologia , Substância P/genética , Substância P/metabolismo , Superóxidos/metabolismo , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Canais de Potencial de Receptor Transitório/deficiência , Vasodilatação/genética , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...