Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 273(Pt 1): 132780, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38825291

RESUMO

Manufacturing a highly effective sorbent for removing UO22+ ions from aqueous effluents is vital for safeguarding the environment and recovering valuable resources. This research presents an innovative strategy employing adsorbents derived from pullulan, specifically tailored with furfuryl-amidoxime (FAO), to improve their affinity for UO22+ ions. The formation of a UO22+ ion-imprinted sorbent (U-II-P) was achieved by crosslinking the UO22+/FAO-modified pullulan (FAO-P) complex with bis(maleimido)ethane (BME) via click Diels-Alder (DA) cyclization, enhancing its attraction and specificity for UO22+ ions. Detailed characterization of the synthesis was performed using NMR and FTIR spectroscopy, and the sorbent's external textures were analyzed using scanning electron microscopy (SEM). The U-II-P sorbent showcased outstanding preference for UO22+ over other metallic ions, with the most efficient adsorption occurring at pH 5. It exhibited a significant adsorption capacity of 262 mg/g, closely aligning with the predictions of the Langmuir adsorption model and obeying pseudo-second-order kinetic behavior. This investigation underlines the effectiveness of FAO-P as a specialized solution for UO22+ ion extraction from wastewater, positioning it as a viable option for the remediation of heavy metals.


Assuntos
Glucanos , Oximas , Urânio , Glucanos/química , Oximas/química , Urânio/química , Adsorção , Química Click/métodos , Cinética , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Concentração de Íons de Hidrogênio , Íons/química
2.
Int J Biol Macromol ; 237: 124073, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36934819

RESUMO

The recovery of uranium from aqueous effluents is very important for both the environment and the future of nuclear power. However, issues of sluggish rates and poor selectivity persist in achieving high-efficiency uranium extraction. In this study, uranyl (UO22+) ions were imprinted on an amino-phenolic chitosan derivative using an ion-imprinting method. First, 3-hydroxy-4-nitrobenzoic acid (HNB) units were joined to chitosan via amide bonding, followed by reducing the -NO2 residues into -NH2. The amino-phenolic chitosan polymer ligand (APCS) was coordinated with UO22+ ions, then cross-linked with epichlorohydrin (ECH), and finally the UO22+ ions were taken away. When compared to non-imprinted sorbent, the resulting UO22+ imprinted sorbent material (U-APCS) recognized the target ions preferentially, allowing for much higher adsorption capacities (qm = 309 ± 1 mg/g) and improved adsorption selectivity for UO22+. The FTIR and XPS analyses supported the pseudo-second-order model's suggestion that chemisorption or coordination is the primary adsorption mechanism by fitting the data well in terms of kinetics. Also, the Langmuir model adequately explained the isotherms, suggesting UO22+ adsorption in the form of monolayers. The pHZPC value was estimated at around 5.7; thus, the optimum uptake pH was achieved between pHs 5 and 6. The thermodynamic properties support the endothermic and spontaneous nature of UO22+ adsorption.


Assuntos
Quitosana , Urânio , Quitosana/química , Urânio/química , Concentração de Íons de Hidrogênio , Termodinâmica , Cinética , Íons , Adsorção , Fenóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...