Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 84(2): 386-400.e11, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38103558

RESUMO

The posttranslational modifier ubiquitin regulates most cellular processes. Its ability to form polymeric chains of distinct linkages is key to its diverse functionality. Yet, we still lack the experimental tools to induce linkage-specific polyubiquitylation of a protein of interest in cells. Here, we introduce a set of engineered ubiquitin protein ligases and matching ubiquitin acceptor tags for the rapid, inducible linear (M1-), K48-, or K63-linked polyubiquitylation of proteins in yeast and mammalian cells. By applying the so-called "Ubiquiton" system to proteasomal targeting and the endocytic pathway, we validate this tool for soluble cytoplasmic and nuclear as well as chromatin-associated and integral membrane proteins and demonstrate how it can be used to control the localization and stability of its targets. We expect that the Ubiquiton system will serve as a versatile, broadly applicable research tool to explore the signaling functions of polyubiquitin chains in many biological contexts.


Assuntos
Ubiquitina-Proteína Ligases , Ubiquitina , Animais , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Poliubiquitina/genética , Poliubiquitina/metabolismo , Transdução de Sinais , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinação , Mamíferos/metabolismo
2.
PLoS Genet ; 18(8): e1010169, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35951639

RESUMO

2-deoxyglucose is a glucose analog that impacts many aspects of cellular physiology. After its uptake and its phosphorylation into 2-deoxyglucose-6-phosphate (2DG6P), it interferes with several metabolic pathways including glycolysis and protein N-glycosylation. Despite this systemic effect, resistance can arise through strategies that are only partially understood. In yeast, 2DG resistance is often associated with mutations causing increased activity of the yeast 5'-AMP activated protein kinase (AMPK), Snf1. Here we focus on the contribution of a Snf1 substrate in 2DG resistance, namely the alpha-arrestin Rod1 involved in nutrient transporter endocytosis. We report that 2DG triggers the endocytosis of many plasma membrane proteins, mostly in a Rod1-dependent manner. Rod1 participates in 2DG-induced endocytosis because 2DG, following its phosphorylation by hexokinase Hxk2, triggers changes in Rod1 post-translational modifications and promotes its function in endocytosis. Mechanistically, this is explained by a transient, 2DG-induced inactivation of Snf1/AMPK by protein phosphatase 1 (PP1). We show that 2DG-induced endocytosis is detrimental to cells, and the lack of Rod1 counteracts this process by stabilizing glucose transporters at the plasma membrane. This facilitates glucose uptake, which may help override the metabolic blockade caused by 2DG, and 2DG export-thus terminating the process of 2DG detoxification. Altogether, these results shed a new light on the regulation of AMPK signaling in yeast and highlight a remarkable strategy to bypass 2DG toxicity involving glucose transporter regulation.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Proteínas de Saccharomyces cerevisiae , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Desoxiglucose/farmacologia , Endocitose/genética , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Humanos , Redes e Vias Metabólicas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Biol Cell ; 113(7): 311-328, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33666950

RESUMO

BACKGROUND INFORMATION: Comprehensive libraries of plasmids for SARS-CoV-2 proteins with various tags (e.g., Strep, HA, Turbo) are now available. They enable the identification of numerous potential protein-protein interactions between the SARS-CoV-2 virus and host proteins. RESULTS: We present here a large library of SARS CoV-2 protein constructs fused with green and red fluorescent proteins and their initial characterisation in various human cell lines including lung epithelial cell models (A549, BEAS-2B), as well as in budding yeast. The localisation of a few SARS-CoV-2 proteins matches their proposed interactions with host proteins. These include the localisation of Nsp13 to the centrosome, Orf3a to late endosomes and Orf9b to mitochondria. CONCLUSIONS AND SIGNIFICANCE: This library should facilitate further cellular investigations, notably by imaging techniques.


Assuntos
COVID-19/virologia , Biblioteca de Peptídeos , SARS-CoV-2/metabolismo , Proteínas Virais/metabolismo , Células A549 , Linhagem Celular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , SARS-CoV-2/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Imagem com Lapso de Tempo , Proteínas Virais/genética , Proteína Vermelha Fluorescente
4.
J Cell Sci ; 133(11)2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32327560

RESUMO

Osh6 and Osh7 are lipid transfer proteins (LTPs) that move phosphatidylserine (PS) from the endoplasmic reticulum (ER) to the plasma membrane (PM). High PS levels at the PM are key for many cellular functions. Intriguingly, Osh6 and Osh7 localize to ER-PM contact sites, although they lack membrane-targeting motifs, in contrast to multidomain LTPs that both bridge membranes and convey lipids. We show that Osh6 localization to contact sites depends on its interaction with the cytosolic tail of the ER-PM tether Ist2, a homolog of TMEM16 proteins. We identify a motif in the Ist2 tail, conserved in yeasts, as the Osh6-binding region, and we map an Ist2-binding surface on Osh6. Mutations in the Ist2 tail phenocopy osh6Δ osh7Δ deletion: they decrease cellular PS levels and block PS transport to the PM. Our study unveils an unexpected partnership between a TMEM16-like protein and a soluble LTP, which together mediate lipid transport at contact sites.This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Membrana Celular , Retículo Endoplasmático/genética , Fosfatidilserinas , Receptores de Esteroides , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
J Cell Sci ; 133(10)2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32265276

RESUMO

Polyubiquitin chains linked via lysine (K) 63 play an important role in endocytosis and membrane trafficking. Their primary source is the ubiquitin protein ligase (E3) Rsp5/NEDD4, which acts as a key regulator of membrane protein sorting. The heterodimeric ubiquitin-conjugating enzyme (E2), Ubc13-Mms2, catalyses K63-specific polyubiquitylation in genome maintenance and inflammatory signalling. In budding yeast, the only E3 proteins known to cooperate with Ubc13-Mms2 so far is a nuclear RING finger protein, Rad5, involved in the replication of damaged DNA. Here, we report a contribution of Ubc13-Mms2 to the sorting of membrane proteins to the yeast vacuole via the multivesicular body (MVB) pathway. In this context, Ubc13-Mms2 cooperates with Pib1, a FYVE-RING finger protein associated with internal membranes. Moreover, we identified a family of membrane-associated FYVE-(type)-RING finger proteins as cognate E3 proteins for Ubc13-Mms2 in several species, and genetic analysis indicates that the contribution of Ubc13-Mms2 to membrane trafficking in budding yeast goes beyond its cooperation with Pib1. Thus, our results widely implicate Ubc13-Mms2 as an Rsp5-independent source of K63-linked polyubiquitin chains in the regulation of membrane protein sorting.This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Humanos , Proteínas de Membrana/genética , Poliubiquitina , Proteínas de Saccharomyces cerevisiae/genética , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética
6.
Nat Commun ; 10(1): 3926, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477717

RESUMO

A central assumption is that lipid transfer proteins (LTPs) bind transiently to organelle membranes to distribute lipids in the eukaryotic cell. Osh6p and Osh7p are yeast LTPs that transfer phosphatidylserine (PS) from the endoplasmic reticulum (ER) to the plasma membrane (PM) via PS/phosphatidylinositol-4-phosphate (PI4P) exchange cycles. It is unknown how, at each cycle, they escape from the electrostatic attraction of the PM, highly anionic, to return to the ER. Using cellular and in vitro approaches, we show that Osh6p reduces its avidity for anionic membranes once it captures PS or PI4P, due to a molecular lid closing its lipid-binding pocket. Thus, Osh6p maintains its transport activity between ER- and PM-like membranes. Further investigations reveal that the lid governs the membrane docking and activity of Osh6p because it is anionic. Our study unveils how an LTP self-limits its residency time on membranes, via an electrostatic switching mechanism, to transfer lipids efficiently.


Assuntos
Proteínas de Transporte/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Proteínas de Transporte/química , Proteínas de Transporte/genética , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Mutação , Fosfatos de Fosfatidilinositol/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Eletricidade Estática
7.
Methods Mol Biol ; 1949: 35-46, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30790247

RESUMO

In order to understand how lipids are sorted between cellular compartments, kinetic assays are required to selectively follow the transport of lipid species in cells. We present here a microfluidics-based protocol to follow the transport of phosphatidylserine (PS) in yeast cells from the site of its synthesis, the endoplasmic reticulum (ER), to downstream compartments, primarily the plasma membrane under our conditions. This assay takes advantage of yeast cells lacking Cho1, the enzyme responsible for PS synthesis. Lyso-PS can be added exogenously and is taken up by the cells and converted to PS. Because acylation of lyso-PS to PS appears to occur at the ER, anterograde transport of PS from the ER can then be followed by fluorescent microscopy using the specific PS reporter C2Lact-GFP. We describe the construction of the required cho1Δ yeast strain and the preparation of lyso-PS. We present an example of the use of this assay to follow the activity of the yeast PS transport proteins Osh6 and Osh7.


Assuntos
Fosfatidilserinas/metabolismo , Leveduras/metabolismo , Transporte Biológico , Processamento de Imagem Assistida por Computador , Metabolismo dos Lipídeos , Microfluídica/métodos , Microscopia de Fluorescência , Saccharomyces cerevisiae/metabolismo
8.
Mol Biol Cell ; 29(9): 1012-1020, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29514933

RESUMO

Yeast cells have a remarkable ability to adapt to nutritional changes in their environment. During adaptation, nutrient-signaling pathways drive the selective endocytosis of nutrient transporters present at the cell surface. A current challenge is to understand the mechanistic basis of this regulation. Transporter endocytosis is triggered by their ubiquitylation, which involves the ubiquitin ligase Rsp5 and its adaptors of the arrestin-related family (ART). This step is highly regulated by nutrient availability. For instance, the monocarboxylate transporter Jen1 is ubiquitylated, endocytosed, and degraded upon exposure to glucose. The ART protein Rod1 is required for this overall process; yet Rod1 rather controls Jen1 trafficking later in the endocytic pathway and is almost dispensable for Jen1 internalization. Thus, how glucose triggers Jen1 internalization remains unclear. We report that another ART named Bul1, but not its paralogue Bul2, contributes to Jen1 internalization. Bul1 responds to glucose availability, and preferentially acts at the plasma membrane for Jen1 internalization. Thus, multiple ARTs can act sequentially along the endocytic pathway to control transporter homeostasis. Moreover, Bul1 is in charge of Jen1 endocytosis after cycloheximide treatment, suggesting that the functional redundancy of ARTs may be explained by their ability to interact with multiple cargoes in various conditions.


Assuntos
Endocitose/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Arrestinas/metabolismo , Membrana Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Glucose/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia , Simportadores/metabolismo , Ubiquitina/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitinação/efeitos dos fármacos
9.
J Cell Biol ; 216(6): 1811-1831, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28468835

RESUMO

Nutrient availability controls the landscape of nutrient transporters present at the plasma membrane, notably by regulating their ubiquitylation and subsequent endocytosis. In yeast, this involves the Nedd4 ubiquitin ligase Rsp5 and arrestin-related trafficking adaptors (ARTs). ARTs are targeted by signaling pathways and warrant that cargo ubiquitylation and endocytosis appropriately respond to nutritional inputs. Here, we show that glucose deprivation regulates the ART protein Csr2/Art8 at multiple levels to trigger high-affinity glucose transporter endocytosis. Csr2 is transcriptionally induced in these conditions through the AMPK orthologue Snf1 and downstream transcriptional repressors. Upon synthesis, Csr2 becomes activated by ubiquitylation. In contrast, glucose replenishment induces CSR2 transcriptional shutdown and switches Csr2 to an inactive, deubiquitylated form. This glucose-induced deubiquitylation of Csr2 correlates with its phospho-dependent association with 14-3-3 proteins and involves protein kinase A. Thus, two glucose signaling pathways converge onto Csr2 to regulate hexose transporter endocytosis by glucose availability. These data illustrate novel mechanisms by which nutrients modulate ART activity and endocytosis.


Assuntos
Arrestina/metabolismo , Endocitose , Glucose/deficiência , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas 14-3-3/metabolismo , Arrestina/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Transporte de Monossacarídeos/genética , Mutação , Proteínas Nucleares/genética , Proteína Fosfatase 1/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Tempo , Transcrição Gênica , Ubiquitinação
10.
Nat Commun ; 7: 13695, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27917864

RESUMO

Hsp70 chaperones assist de novo folding of newly synthesized proteins in all cells. In yeast, the specialized Hsp70 Ssb directly binds to ribosomes. The structural basis and functional mode of recruitment of Ssb to ribosomes is not understood. Here, we present the molecular details underlying ribosome binding of Ssb in Saccharomyces cerevisiae. This interaction is multifaceted, involving the co-chaperone RAC and two specific regions within Ssb characterized by positive charges. The C-terminus of Ssb mediates the key contact and a second attachment point is provided by a KRR-motif in the substrate binding domain. Strikingly, ribosome binding of Ssb is not essential. Autonomous ribosome attachment becomes necessary if RAC is absent, suggesting a dual mode of Ssb recruitment to nascent chains. We propose, that the multilayered ribosomal interaction allows positioning of Ssb in an optimal orientation to the tunnel exit guaranteeing an efficient nascent polypeptide interaction.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Peptídeos/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Simulação por Computador , Sequência Conservada , Teste de Complementação Genética , Pleiotropia Genética , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Modelos Moleculares , Mutação/genética , Fenótipo , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato
11.
Cell ; 152(1-2): 196-209, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23332755

RESUMO

In eukaryotic cells a molecular chaperone network associates with translating ribosomes, assisting the maturation of emerging nascent polypeptides. Hsp70 is perhaps the major eukaryotic ribosome-associated chaperone and the first reported to bind cotranslationally to nascent chains. However, little is known about the underlying principles and function of this interaction. Here, we use a sensitive and global approach to define the cotranslational substrate specificity of the yeast Hsp70 SSB. We find that SSB binds to a subset of nascent polypeptides whose intrinsic properties and slow translation rates hinder efficient cotranslational folding. The SSB-ribosome cycle and substrate recognition is modulated by its ribosome-bound cochaperone, RAC. Deletion of SSB leads to widespread aggregation of newly synthesized polypeptides. Thus, cotranslationally acting Hsp70 meets the challenge of folding the eukaryotic proteome by stabilizing its longer, more slowly translated, and aggregation-prone nascent polypeptides.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Biossíntese de Proteínas , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ribossomos/metabolismo
12.
Cell ; 150(2): 413-25, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22817900

RESUMO

Protein function is often regulated by posttranslational modifications (PTMs), and recent advances in mass spectrometry have resulted in an exponential increase in PTM identification. However, the functional significance of the vast majority of these modifications remains unknown. To address this problem, we compiled nearly 200,000 phosphorylation, acetylation, and ubiquitination sites from 11 eukaryotic species, including 2,500 newly identified ubiquitylation sites for Saccharomyces cerevisiae. We developed methods to prioritize the functional relevance of these PTMs by predicting those that likely participate in cross-regulatory events, regulate domain activity, or mediate protein-protein interactions. PTM conservation within domain families identifies regulatory "hot spots" that overlap with functionally important regions, a concept that we experimentally validated on the HSP70 domain family. Finally, our analysis of the evolution of PTM regulation highlights potential routes for neutral drift in regulatory interactions and suggests that only a fraction of modification sites are likely to have a significant biological role.


Assuntos
Eucariotos/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Sequência de Aminoácidos , Animais , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Ubiquitinação
13.
PLoS One ; 6(11): e28211, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22140548

RESUMO

Hsp90 is an essential eukaryotic chaperone with a role in folding specific "client" proteins such as kinases and hormone receptors. Previously performed homozygous diploid yeast deletion collection screens uncovered broad requirements for Hsp90 in cellular transport and cell cycle progression. These screens also revealed that the requisite cellular functions of Hsp90 change with growth temperature. We present here for the first time the results of heterozygous deletion collection screens conducted at the hypothermic stress temperature of 15°C. Extensive bioinformatic analyses were performed on the resulting data in combination with data from homozygous and heterozygous screens previously conducted at normal (30°C) and hyperthermic stress (37°C) growth temperatures. Our resulting meta-analysis uncovered extensive connections between Hsp90 and (1) general transcription, (2) ribosome biogenesis and (3) GTP binding proteins. Predictions from bioinformatic analyses were tested experimentally, supporting a role for Hsp90 in ribosome stability. Importantly, the integrated analysis of the 15°C heterozygous deletion pool screen with previously conducted 30°C and 37°C screens allows for essential genetic targets of Hsp90 to emerge. Altogether, these novel contributions enable a more complete picture of essential Hsp90 functions.


Assuntos
Deleção de Genes , Testes Genéticos , Proteínas de Choque Térmico HSP90/metabolismo , Heterozigoto , Saccharomyces cerevisiae/genética , Bases de Dados Genéticas , Proteínas de Ligação ao GTP/metabolismo , Redes Reguladoras de Genes/genética , Homozigoto , Funções Verossimilhança , Proteínas Nucleares/metabolismo , Fases de Leitura Aberta/genética , Ligação Proteica , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura
14.
PLoS Biol ; 9(7): e1001100, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21765803

RESUMO

Polypeptides exiting the ribosome must fold and assemble in the crowded environment of the cell. Chaperones and other protein homeostasis factors interact with newly translated polypeptides to facilitate their folding and correct localization. Despite the extensive efforts, little is known about the specificity of the chaperones and other factors that bind nascent polypeptides. To address this question we present an approach that systematically identifies cotranslational chaperone substrates through the mRNAs associated with ribosome-nascent chain-chaperone complexes. We here focused on two Saccharomyces cerevisiae chaperones: the Signal Recognition Particle (SRP), which acts cotranslationally to target proteins to the ER, and the Nascent chain Associated Complex (NAC), whose function has been elusive. Our results provide new insights into SRP selectivity and reveal that NAC is a general cotranslational chaperone. We found surprising differential substrate specificity for the three subunits of NAC, which appear to recognize distinct features within nascent chains. Our results also revealed a partial overlap between the sets of nascent polypeptides that interact with NAC and SRP, respectively, and showed that NAC modulates SRP specificity and fidelity in vivo. These findings give us new insight into the dynamic interplay of chaperones acting on nascent chains. The strategy we used should be generally applicable to mapping the specificity, interplay, and dynamics of the cotranslational protein homeostasis network.


Assuntos
Proteínas Fúngicas/metabolismo , Genômica/métodos , Chaperonas Moleculares/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/análise , Saccharomyces cerevisiae , Partícula de Reconhecimento de Sinal/metabolismo , Fracionamento Celular , Centrifugação com Gradiente de Concentração , Eletroforese em Gel de Poliacrilamida , Proteínas Fúngicas/genética , Genoma Fúngico , Chaperonas Moleculares/genética , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica , Dobramento de Proteína , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Partícula de Reconhecimento de Sinal/genética , Especificidade por Substrato
15.
J Cell Biol ; 189(1): 69-81, 2010 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-20368619

RESUMO

Molecular chaperones assist cellular protein folding as well as oligomeric complex assembly. In eukaryotic cells, several chaperones termed chaperones linked to protein synthesis (CLIPS) are transcriptionally and physically linked to ribosomes and are implicated in protein biosynthesis. In this study, we show that a CLIPS network comprising two ribosome-anchored J-proteins, Jjj1 and Zuo1, function together with their partner Hsp70 proteins to mediate the biogenesis of ribosomes themselves. Jjj1 and Zuo1 have overlapping but distinct functions in this complex process involving the coordinated assembly and remodeling of dozens of proteins on the ribosomal RNA (rRNA). Both Jjj1 and Zuo1 associate with nuclear 60S ribosomal biogenesis intermediates and play an important role in nuclear rRNA processing, leading to mature 25S rRNA. In addition, Zuo1, acting together with its Hsp70 partner, SSB (stress 70 B), also participates in maturation of the 35S rRNA. Our results demonstrate that, in addition to their known cytoplasmic roles in de novo protein folding, some ribosome-anchored CLIPS chaperones play a critical role in nuclear steps of ribosome biogenesis.


Assuntos
Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Citosol/metabolismo , Eucariotos , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP70/genética , Chaperonas Moleculares/genética , Dobramento de Proteína , RNA Ribossômico/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
16.
Cell ; 124(1): 75-88, 2006 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-16413483

RESUMO

Molecular chaperones assist the folding of newly translated and stress-denatured proteins. In prokaryotes, overlapping sets of chaperones mediate both processes. In contrast, we find that eukaryotes evolved distinct chaperone networks to carry out these functions. Genomic and functional analyses indicate that in addition to stress-inducible chaperones that protect the cellular proteome from stress, eukaryotes contain a stress-repressed chaperone network that is dedicated to protein biogenesis. These stress-repressed chaperones are transcriptionally, functionally, and physically linked to the translational apparatus and associate with nascent polypeptides emerging from the ribosome. Consistent with a function in de novo protein folding, impairment of the translation-linked chaperone network renders cells sensitive to misfolding in the context of protein synthesis but not in the context of environmental stress. The emergence of a translation-linked chaperone network likely underlies the elaborate cotranslational folding process necessary for the evolution of larger multidomain proteins characteristic of eukaryotic cells.


Assuntos
Células Eucarióticas/fisiologia , Perfilação da Expressão Gênica , Chaperonas Moleculares/classificação , Chaperonas Moleculares/fisiologia , Adenosina Trifosfatases , Citosol/química , Citosol/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Células Eucarióticas/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/fisiologia , Chaperonas Moleculares/genética , Análise de Sequência com Séries de Oligonucleotídeos , Dobramento de Proteína , Ribossomos/fisiologia , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Sensibilidade e Especificidade , Biologia de Sistemas/métodos , Transcrição Gênica
17.
J Biol Chem ; 280(50): 41252-61, 2005 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-16219770

RESUMO

Molecular chaperones such as Hsp70 use ATP binding and hydrolysis to prevent aggregation and ensure the efficient folding of newly translated and stress-denatured polypeptides. Eukaryotic cells contain several cytosolic Hsp70 subfamilies. In yeast, these include the Hsp70s SSB and SSA as well as the Hsp110-like Sse1/2p. The cellular functions and interplay between these different Hsp70 systems remain ill-defined. Here we show that the different cytosolic Hsp70 systems functionally interact with Hsp110 to form a chaperone network that interacts with newly translated polypeptides during their biogenesis. Both SSB and SSA Hsp70s form stable complexes with the Hsp110 Sse1p. Pulse-chase analysis indicates that these Hsp70/Hsp110 teams, SSB/SSE and SSA/SSE, transiently associate with newly synthesized polypeptides with different kinetics. SSB Hsp70s bind cotranslationally to a large fraction of nascent chains, suggesting an early role in the stabilization of nascent chains. SSA Hsp70s bind mostly post-translationally to a more restricted subset of newly translated polypeptides, suggesting a downstream function in the folding pathway. Notably, loss of SSB dramatically enhances the cotranslational association of SSA with nascent chains, suggesting SSA can partially fulfill an SSB-like function. On the other hand, the absence of SSE1 enhances polypeptide binding to both SSB and SSA and impairs cell growth. It, thus, appears that Hsp110 is an important regulator of Hsp70-substrate interactions. Based on our data, we propose that Hsp110 cooperates with the SSB and SSA Hsp70 subfamilies, which act sequentially during de novo folding.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Choque Térmico HSP110/fisiologia , Proliferação de Células , Cromatografia em Gel , Cromossomos/metabolismo , Citosol/metabolismo , Eletroforese em Gel de Poliacrilamida , Proteínas de Choque Térmico HSP110/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Hidrólise , Imunoprecipitação , Cinética , Espectrometria de Massas , Modelos Biológicos , Modelos Genéticos , Chaperonas Moleculares/metabolismo , Peso Molecular , Peptídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Dobramento de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Coloração pela Prata , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...