Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 339: 122421, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38232799

RESUMO

AIMS: In this study, we investigated the role of the FTO gene in pancreatic ß-cell biology and its association with type 2 diabetes (T2D). To address this issue, human pancreatic islets and rat INS-1 (832/13) cells were used to perform gene silencing, overexpression, and functional analysis of FTO expression; levels of FTO were also measured in serum samples obtained from diabetic and obese individuals. RESULTS: The findings revealed that FTO expression was reduced in islets from hyperglycemic/diabetic donors compared to normal donors. This reduction correlated with decreased INS and GLUT1 expression and increased PDX1, GCK, and SNAP25 expression. Silencing of Fto in INS-1 cells impaired insulin release and mitochondrial ATP production and increased apoptosis in pro-apoptotic cytokine-treated cells. However, glucose uptake and reactive oxygen species production rates remained unaffected. Downregulation of key ß-cell genes was observed following Fto-silencing, while Glut2 and Gck were unaffected. RNA-seq analysis identified several dysregulated genes involved in metal ion binding, calcium ion binding, and protein serine/threonine kinase activity. Furthermore, our findings showed that Pdx1 or Mafa-silencing did not influence FTO protein expression. Overexpression of FTO in human islets promoted insulin secretion and upregulated INS, PDX1, MAFA, and GLUT1 expression. Serum FTO levels did not significantly differ between individuals with diabetes or obesity and their healthy counterparts. CONCLUSION: These findings suggest that FTO plays a crucial role in ß-cell survival, metabolism, and function and point to a potential therapeutic utility of FTO in T2D patients.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Ratos , Animais , Secreção de Insulina/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Ilhotas Pancreáticas/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Obesidade/genética , Obesidade/metabolismo , Glucose/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...