Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(6): e0253821, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34166476

RESUMO

Recently, we reported that the chemokine (C-X-C motif) receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) heteromerize with α1A/B/D-adrenoceptors (ARs) and arginine vasopressin receptor 1A (AVPR1A) in recombinant systems and in rodent and human vascular smooth muscle cells (hVSMCs). In these studies, we observed that heteromerization between two receptor partners may depend on the presence and the expression levels of other partnering receptors. To test this hypothesis and to gain initial insight into the formation of these receptor heteromers in native cells, we utilized proximity ligation assays in hVSMCs to visualize receptor-receptor proximity and systematically studied how manipulation of the expression levels of individual protomers affect heteromerization patterns among other interacting receptor partners. We confirmed subtype-specific heteromerization between endogenously expressed α1A/B/D-ARs and detected that AVPR1A also heteromerizes with α1A/B/D-ARs. siRNA knockdown of CXCR4 and of ACKR3 resulted in a significant re-arrangement of the heteromerization patterns among α1-AR subtypes. Similarly, siRNA knockdown of AVPR1A significantly increased heteromerization signals for seven of the ten receptor pairs between CXCR4, ACKR3, and α1A/B/D-ARs. Our findings suggest plasticity of seven transmembrane helix (7TM) receptor heteromerization in native cells and could be explained by a supramolecular organization of these receptors within dynamic clusters in the plasma membrane. Because we previously observed that recombinant CXCR4, ACKR3, α1a-AR and AVPR1A form hetero-oligomeric complexes composed of 2-4 different protomers, which show signaling properties distinct from individual protomers, re-arrangements of receptor heteromerization patterns in native cells may contribute to the phenomenon of context-dependent GPCR signaling. Furthermore, these findings advise caution in the interpretation of functional consequences after 7TM receptor knockdown in experimental models. Alterations of the heteromerization patterns among other receptor partners may alter physiological and pathological responses, in particular in more complex systems, such as studies on the function of isolated organs or in in vivo experiments.


Assuntos
Regulação da Expressão Gênica , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Multimerização Proteica , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Linhagem Celular , Humanos , Regiões Promotoras Genéticas , Estrutura Secundária de Proteína
2.
PLoS One ; 13(9): e0204041, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30248140

RESUMO

We observed in PRESTO-Tango ß-arrestin recruitment assays that the α1-adrenergic receptor (AR) antagonist prazosin activates chemokine (C-X-C motif) receptor (CXCR)4. This prompted us to further examine this unexpected pharmacological behavior. We screened a panel of 14 α1/2- and ß1/2/3-AR antagonists for CXCR4 and atypical chemokine receptor (ACKR)3 agonist activity in PRESTO-Tango assays against the cognate agonist CXCL12. We observed that multiple α1-AR antagonists activate CXCR4 (CXCL12 = prazosin = cyclazosin > doxazosin) and ACKR3 (CXCL12 = prazosin = cyclazosin > alfuzosin = doxazosin = phentolamine > terazosin = silodosin = tamsulosin). The two strongest CXCR4/ACKR3 activators, prazosin and cyclazosin, were selected for a more detailed evaluation. We found that the drugs dose-dependently activate both receptors in ß-arrestin recruitment assays, stimulate ERK1/2 phosphorylation in HEK293 cells overexpressing each receptor, and that their effects on CXCR4 could be inhibited with AMD3100. Both α1-AR antagonists induced significant chemical shift changes in the 1H-13C-heteronuclear single quantum correlation spectrum of CXCR4 and ACKR3 in membranes, suggesting receptor binding. Furthermore, prazosin and cyclazosin induced internalization of endogenous CXCR4/ACKR3 in human vascular smooth muscle cells (hVSMC). While these drugs did not in induce chemotaxis in hVSMC, they inhibited CXCL12-induced chemotaxis with high efficacy and potency (IC50: prazosin-4.5 nM, cyclazosin 11.6 pM). Our findings reveal unexpected pharmacological properties of prazosin, cyclazosin, and likely other α1-AR antagonists. The results of the present study imply that prazosin and cyclazosin are biased or partial CXCR4/ACKR3 agonists, which function as potent CXCL12 antagonists. Our findings could provide a mechanistic basis for previously observed anti-cancer properties of α1-AR antagonists and support the concept that prazosin could be re-purposed for the treatment of disease processes in which CXCR4 and ACKR3 are thought to play significant pathophysiological roles, such as cancer metastases or various autoimmune pathologies.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Receptores CXCR4/agonistas , Receptores CXCR/agonistas , Sítios de Ligação , Células Cultivadas , Quimiocina CXCL12/antagonistas & inibidores , Quimiotaxia/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Ressonância Magnética Nuclear Biomolecular , Prazosina/farmacologia , Quinazolinas/farmacologia , Quinoxalinas/farmacologia , Receptores CXCR/química , Receptores CXCR4/química , beta-Arrestinas/metabolismo
3.
Sci Rep ; 8(1): 2730, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29426850

RESUMO

Recently, we reported that chemokine (C-X-C motif) receptor (CXCR)4 and atypical chemokine receptor 3 regulate α1-adrenergic receptors (α1-AR) through the formation of hetero-oligomeric complexes. Whether α1-ARs also regulate chemokine receptor function within such heteromeric receptor complexes is unknown. We observed that activation of α1b-AR within the α1b-AR:CXCR4 heteromeric complex leads to cross-recruitment of ß-arrestin2 to CXCR4, which could not be inhibited with AMD3100. Activation of CXCR4 did not cross-recruit ß-arrestin2 to α1b-AR. A peptide analogue of transmembrane domain 2 of CXCR4 interfered with α1b-AR:CXCR4 heteromerization and inhibited α1b-AR-mediated ß-arrestin2 cross-recruitment. Phenylephrine (PE) induced internalization of CXCR4 in HEK293 cells co-expressing CXCR4 and α1b-AR and of endogenous CXCR4 in human vascular smooth muscle cells (hVSMC). The latter was detectable despite blockade of CXCR4 with the neutralizing antibody 12G5. hVSMC migrated towards CXCL12 and PE, but not towards a combination of CXCL12 and PE. PE inhibited CXCL12-induced chemotaxis of hVSMC (IC50: 77 ± 30 nM). Phentolamine cross-inhibited CXCL12-induced chemotaxis of hVSMC, whereas AMD3100 did not cross-inhibit PE-induced chemotaxis. These data provide evidence for asymmetrical cross-regulation of CXCR4 by α1-adrenergic receptors within the heteromeric receptor complex. Our findings provide mechanistic insights into the function of α1-AR:CXCR4 heteromers and suggest alternative approaches to modulate CXCR4 in disease conditions.


Assuntos
Membrana Celular/metabolismo , Quimiotaxia , Miócitos de Músculo Liso/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Receptores CXCR4/metabolismo , Agonistas de Receptores Adrenérgicos alfa 1/metabolismo , Células Cultivadas , Humanos , Ligantes , Miócitos de Músculo Liso/citologia , Fenilefrina/metabolismo , Ligação Proteica , Receptores Adrenérgicos alfa 1/química , Transdução de Sinais , beta-Arrestinas/metabolismo
4.
Open Biol ; 8(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29386406

RESUMO

Recent observations suggest that atypical chemokine receptor (ACKR)3 and chemokine (C-X-C motif) receptor (CXCR)4 regulate human vascular smooth muscle function through hetero-oligomerization with α1-adrenoceptors. Here, we show that ACKR3 also regulates arginine vasopressin receptor (AVPR)1A. We observed that ACKR3 agonists inhibit arginine vasopressin (aVP)-induced inositol trisphosphate (IP3) production in human vascular smooth muscle cells (hVSMCs) and antagonize aVP-mediated constriction of isolated arteries. Proximity ligation assays, co-immunoprecipitation and bioluminescence resonance energy transfer experiments suggested that recombinant and endogenous ACKR3 and AVPR1A interact on the cell surface. Interference with ACKR3 : AVPR1A heteromerization using siRNA and peptide analogues of transmembrane domains of ACKR3 abolished aVP-induced IP3 production. aVP stimulation resulted in ß-arrestin 2 recruitment to AVPR1A and ACKR3. While ACKR3 activation failed to cross-recruit ß-arrestin 2 to AVPR1A, the presence of ACKR3 reduced the efficacy of aVP-induced ß-arrestin 2 recruitment to AVPR1A. AVPR1A and ACKR3 co-internalized upon agonist stimulation in hVSMC. These data suggest that AVPR1A : ACKR3 heteromers are constitutively expressed in hVSMC, provide insights into molecular events at the heteromeric receptor complex, and offer a mechanistic basis for interactions between the innate immune and vasoactive neurohormonal systems. Our findings suggest that ACKR3 is a regulator of vascular smooth muscle function and a possible drug target in diseases associated with impaired vascular reactivity.


Assuntos
Músculo Liso Vascular/metabolismo , Multimerização Proteica , Receptores CXCR/metabolismo , Receptores de Vasopressinas/metabolismo , Animais , Arginina Vasopressina/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Fosfatos de Inositol/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , beta-Arrestinas/metabolismo
5.
J Am Heart Assoc ; 6(8)2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28862946

RESUMO

BACKGROUND: Recently, we provided evidence that α1-adrenergic receptors (ARs) in vascular smooth muscle are regulated by chemokine (C-X-C motif) receptor (CXCR) 4 and atypical chemokine receptor 3 (ACKR3). While we showed that CXCR4 controls α1-ARs through formation of heteromeric receptor complexes in human vascular smooth muscle cells (hVSMCs), the molecular basis underlying cross-talk between ACKR3 and α1-ARs is unknown. METHODS AND RESULTS: We show that ACKR3 agonists inhibit inositol trisphosphate production in hVSMCs on stimulation with phenylephrine. In proximity ligation assays and co-immunoprecipitation experiments, we observed that recombinant and endogenous ACKR3 form heteromeric complexes with α1A/B/D-AR. While small interfering RNA knockdown of ACKR3 in hVSMCs reduced α1B/D-AR:ACKR3, CXCR4:ACKR3, and α1B/D-AR:CXCR4 complexes, small interfering RNA knockdown of CXCR4 reduced α1B/D-AR:ACKR3 heteromers. Phenylephrine-induced inositol trisphosphate production from hVSMCs was abolished after ACKR3 and CXCR4 small interfering RNA knockdown. Peptide analogs of transmembrane domains 2/4/7 of ACKR3 showed differential effects on heteromerization between ACKR3, α1A/B/D-AR, and CXCR4. While the transmembrane domain 2 peptide interfered with α1B/D-AR:ACKR3 and CXCR4:ACKR3 heteromerization, it increased heteromerization between CXCR4 and α1A/B-AR. The transmembrane domain 2 peptide inhibited ACKR3 but did not affect α1b-AR in ß-arrestin recruitment assays. Furthermore, the transmembrane domain 2 peptide inhibited phenylephrine-induced inositol trisphosphate production in hVSMCs and attenuated phenylephrine-induced constriction of mesenteric arteries. CONCLUSIONS: α1-ARs form hetero-oligomeric complexes with the ACKR3:CXCR4 heteromer, which is required for α1B/D-AR function, and activation of ACKR3 negatively regulates α1-ARs. G protein-coupled receptor hetero-oligomerization is a dynamic process, which depends on the relative abundance of available receptor partners. Endogenous α1-ARs function within a network of hetero-oligomeric receptor complexes.


Assuntos
Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptor Cross-Talk , Receptores Adrenérgicos alfa 1/metabolismo , Receptores CXCR4/metabolismo , Receptores CXCR/metabolismo , Trifosfato de Adenosina/metabolismo , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Ligantes , Complexos Multiproteicos , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Interferência de RNA , Receptores Adrenérgicos alfa 1/efeitos dos fármacos , Receptores Adrenérgicos alfa 1/genética , Receptores CXCR/genética , Receptores CXCR4/genética , Transdução de Sinais , Transfecção , Vasoconstrição
6.
Mol Cell Biochem ; 434(1-2): 143-151, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28455789

RESUMO

Chemokine (C-X-C motif) receptor 4 (CXCR4) regulates cell trafficking and plays important roles in the immune system. Ubiquitin has recently been identified as an endogenous non-cognate agonist of CXCR4, which activates CXCR4 via interaction sites that are distinct from those of the cognate agonist C-X-C motif chemokine ligand 12 (CXCL12). As compared with CXCL12, chemotactic activities of ubiquitin in primary human cells are poorly characterized. Furthermore, evidence for functional selectivity of CXCR4 agonists is lacking, and structural consequences of ubiquitin binding to CXCR4 are unknown. Here, we show that ubiquitin and CXCL12 have comparable chemotactic activities in normal human peripheral blood mononuclear cells, monocytes, vascular smooth muscle, and endothelial cells. Chemotactic activities of the CXCR4 ligands could be inhibited with the selective CXCR4 antagonist AMD3100 and with a peptide analogue of the second transmembrane domain of CXCR4. In human monocytes, ubiquitin- and CXCL12-induced chemotaxis could be inhibited with pertussis toxin and with inhibitors of phospholipase C, phosphatidylinositol 3 kinase, and extracellular signal-regulated kinase 1/2. Both agonists induced inositol trisphosphate production in vascular smooth muscle cells, which could be inhibited with AMD3100. In ß-arrestin recruitment assays, ubiquitin did not sufficiently recruit ß-arrestin2 to CXCR4 (EC50 > 10 µM), whereas the EC50 for CXCL12 was 4.6 nM (95% confidence interval 3.1-6.1 nM). Both agonists induced similar chemical shift changes in the 13C-1H-heteronuclear single quantum correlation (HSQC) spectrum of CXCR4 in membranes, whereas CXCL11 did not significantly alter the 13C-1H-HSQC spectrum of CXCR4. Our findings point towards ubiquitin as a biased agonist of CXCR4.


Assuntos
Receptores CXCR4/metabolismo , Quimiocina CXCL12/metabolismo , Quimiotaxia , Ensaio de Imunoadsorção Enzimática , Humanos , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Receptores CXCR4/agonistas , Receptores CXCR4/química , Transdução de Sinais , Ubiquitina/metabolismo
7.
J Burn Care Res ; 38(1): e133-e143, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-26204385

RESUMO

The objective of this study was to determine whether urine ubiquitin levels are elevated after burns and to assess whether urine ubiquitin could be useful as a noninvasive biomarker for burn patients. Forty burn patients (%TBSA: 20 ± 22; modified Baux scores: 73 ± 26) were included (control: 11 volunteers). Urine was collected in 2-hour intervals for 72 hours, followed by 12-hour intervals until discharge from the intensive care unit. Ubiquitin concentrations were analyzed by enzyme linked immunosorbent assay and Western blot. Total protein was determined with a Bradford assay. Patient characteristics and clinical parameters were documented. Urine ubiquitin concentrations, renal ubiquitin excretion, and excretion rates were correlated with patient characteristics and outcomes. Initial urine ubiquitin concentrations were 362 ± 575 ng/ml in patients and 14 ± 18 ng/ml in volunteers (P < .01). Renal ubiquitin excretion on day 1 was 292.6 ± 510.8 µg/24 hr and 21 ± 27 µg/24 hr in volunteers (P < .01). Initial ubiquitin concentrations correlated with modified Baux scores (r = .46; P = .02). Ubiquitin levels peaked at day 6 postburn, whereas total protein concentrations and serum creatinine levels remained within the normal range. Total renal ubiquitin excretion and excretion rates were higher in patients with %TBSA ≥20 than with %TBSA <20, in patients who developed sepsis/multiple organ failure than in patients without these complications and in nonsurvivors vs survivors. These data suggest that ubiquitin urine levels are significantly increased after burns. Renal ubiquitin excretion and/or excretion rates are associated with %TBSA, sepsis/multiple organ failure, and mortality. Although these findings may explain previous correlations between systemic ubiquitin levels and outcomes after burns, the large variability of ubiquitin urine levels suggests that urine ubiquitin will not be useful as a noninvasive disease biomarker.


Assuntos
Queimaduras/mortalidade , Queimaduras/urina , Ubiquitina/urina , Adulto , Idoso , Biomarcadores/análise , Western Blotting , Superfície Corporal , Queimaduras/diagnóstico , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Escala de Gravidade do Ferimento , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Prognóstico , Valores de Referência , Taxa de Sobrevida
8.
Int J Mol Sci ; 17(5)2016 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-27331810

RESUMO

Recent evidence suggests that C-X-C chemokine receptor type 4 (CXCR4) heteromerizes with α1A/B-adrenoceptors (AR) and atypical chemokine receptor 3 (ACKR3) and that CXCR4:α1A/B-AR heteromers are important for α1-AR function in vascular smooth muscle cells (VSMC). Structural determinants for CXCR4 heteromerization and functional consequences of CXCR4:α1A/B-AR heteromerization in intact arteries, however, remain unknown. Utilizing proximity ligation assays (PLA) to visualize receptor interactions in VSMC, we show that peptide analogs of transmembrane-domain (TM) 2 and TM4 of CXCR4 selectively reduce PLA signals for CXCR4:α1A-AR and CXCR4:ACKR3 interactions, respectively. While both peptides inhibit CXCL12-induced chemotaxis, only the TM2 peptide inhibits phenylephrine-induced Ca(2+)-fluxes, contraction of VSMC and reduces efficacy of phenylephrine to constrict isolated arteries. In a Cre-loxP mouse model to delete CXCR4 in VSMC, we observed 60% knockdown of CXCR4. PLA signals for CXCR4:α1A/B-AR and CXCR4:ACKR3 interactions in VSMC, however, remained constant. Our observations point towards TM2/4 of CXCR4 as possible contact sites for heteromerization and suggest that TM-derived peptide analogs permit selective targeting of CXCR4 heteromers. A molecular dynamics simulation of a receptor complex in which the CXCR4 homodimer interacts with α1A-AR via TM2 and with ACKR3 via TM4 is presented. Our findings further imply that CXCR4:α1A-AR heteromers are important for intrinsic α1-AR function in intact arteries and provide initial and unexpected insights into the regulation of CXCR4 heteromerization in VSMC.


Assuntos
Músculo Liso Vascular/metabolismo , Multimerização Proteica , Receptores Adrenérgicos alfa 1/metabolismo , Receptores CXCR4/metabolismo , Animais , Sítios de Ligação , Cálcio/metabolismo , Linhagem Celular , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Simulação de Dinâmica Molecular , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Receptores CXCR/genética , Receptores CXCR/metabolismo , Receptores CXCR4/química , Receptores CXCR4/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...