Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ind Microbiol Biotechnol ; 19(2): 142-9, 1997 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9366095

RESUMO

Biofilm formation is a long-standing problem in ultrapure water and bioprocess fluid transport lines. The standard materials used in these applications (316L stainless steel, polypropylene and glass) have long been known to be good surfaces for the attachment of bacteria and other biological materials. To compare the relative tenacity of biofilms grown on materials used in manufacturing processes, a model system for biofilm attachment was constructed that approximates the conditions in industrial process systems. New fluorinated polymers were compared to the above materials by evaluating the surface area coverage of bacterial populations on materials before and after mild chemical treatment. In addition, contact angle studies compared the relative hydrophobicity of surfaces to suspensions of bacteria in growth media, and scanning electron microscopy and atomic force microscopy studies were used to characterize surface smoothness and surface defects. Biofilm adherence to polymer-based substrata was determined to be a function of both surface finish and surface chemistry. Specifically, materials that are less chemically reactive, as indicated by higher contact angle, can have rougher surface finishes and still be amenable to biofilm removal.


Assuntos
Aderência Bacteriana , Biofilmes , Polipropilenos , Politetrafluoretileno , Aço Inoxidável
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...