Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Build Environ ; 256: None, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38983757

RESUMO

Ultra-Clean-Air (UCA) operating theatres aim to minimise surgical instrument contamination and wound infection through high flow rates of ultra-clean air, reducing the presence of Microbe Carrying Particles (MCPs). This study investigates the airflow patterns and ventilation characteristics of a UCA operating theatre (OT) under standard ventilation system operating conditions, considering both empty and partially occupied scenarios. Utilising a precise computational model, quasi-Direct Numerical Simulations (qDNS) were conducted to delineate flow velocity profiles, energy spectra, distributions of turbulent kinetic energy, energy dissipation rate, local Kolmogorov scales, and pressure-based coherent structures. These results were also complemented by a tracer gas decay analysis following ASHRAE standard guidelines. Simulations showed that contrary to the intended laminar regime, the OT's geometry inherently fosters a predominantly turbulent airflow, sustained until evacuation through the exhaust vents, and facilitating recirculation zones irrespective of occupancy level. Notably, the occupied scenario demonstrated superior ventilation efficiency, a phenomenon attributed to enhanced kinetic energy induced by the additional obstructions. The findings underscore the critical role of UCA-OT design in mitigating MCP dissemination, highlighting the potential to augment the design to optimise airflow across a broader theatre spectrum, thereby diminishing recirculation zones and consequently reducing the propensity for Surgical Site Infections (SSIs). The study advocates for design refinements to harness the turbulent dynamics beneficially, steering towards a safer surgical environment.

2.
Sci Rep ; 11(1): 21449, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728650

RESUMO

The World Health Organisation has called for a 40% increase in personal protective equipment manufacturing worldwide, recognising that frontline workers need effective protection during the COVID-19 pandemic. Current devices suffer from high fit-failure rates leaving significant proportions of users exposed to risk of viral infection. Driven by non-contact, portable, and widely available 3D scanning technologies, a workflow is presented whereby a user's face is rapidly categorised using relevant facial parameters. Device design is then directed down either a semi-customised or fully-customised route. Semi-customised designs use the extracted eye-to-chin distance to categorise users in to pre-determined size brackets established via a cohort of 200 participants encompassing 87.5% of the cohort. The user's nasal profile is approximated to a Gaussian curve to further refine the selection in to one of three subsets. Flexible silicone provides the facial interface accommodating minor mismatches between true nasal profile and the approximation, maintaining a good seal in this challenging region. Critically, users with outlying facial parameters are flagged for the fully-customised route whereby the silicone interface is mapped to 3D scan data. These two approaches allow for large scale manufacture of a limited number of design variations, currently nine through the semi-customised approach, whilst ensuring effective device fit. Furthermore, labour-intensive fully-customised designs are targeted as those users who will most greatly benefit. By encompassing both approaches, the presented workflow balances manufacturing scale-up feasibility with the diverse range of users to provide well-fitting devices as widely as possible. Novel flow visualisation on a model face is presented alongside qualitative fit-testing of prototype devices to support the workflow methodology.


Assuntos
Face/fisiologia , Equipamento de Proteção Individual , Fotogrametria/métodos , COVID-19/prevenção & controle , COVID-19/virologia , Desenho Assistido por Computador , Desenho de Equipamento , Face/anatomia & histologia , Humanos , Impressão Tridimensional , SARS-CoV-2/isolamento & purificação
3.
Ultrason Sonochem ; 48: 218-230, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30080545

RESUMO

Acoustic streaming phenomena of ultrasound propagation through liquid media was investigated experimentally employing particle image velocimetry (PIV). Parameters associated with the ultrasonic processor of ultrasonic amplitude (i.e., acoustic power) and transducer tip diameter (i.e., surface area), as well as, fluid rheology (i.e., water, glycerol solution and CMC solution), were studied for their effects on overall flow behaviour and fluid velocity. PIV yielded velocity gradient maps, demonstrating the acoustic streaming phenomena of ultrasound and its associated flow behaviour as a function of ultrasonic amplitude and fluid rheology, whereby increasing amplitude allowed for greater penetration of the acoustic-beam through the bulk of the fluid, and increasing fluid rheology yielded the converse effect. Moreover, upon impingement of the acoustic-beam with the base of vessel, vortex formation occurred, yielding a recirculation pattern. The maximum observed fluid velocities for water, glycerol solution and CMC solution were 0.329 m s-1, 0.423 m s-1, and 0.304 m s-1, respectively (large diameter sonotrode tip for an ultrasonic amplitude of 80%). Furthermore, shear rates were attained (maximum values of 24.25 s-1), and Reynolds numbers were determined in order to assess the degree of turbulence as a function of investigated parameters.

4.
Int J Pharm ; 495(1): 362-373, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26363111

RESUMO

In this study, planar induced fluorescence (PLIF) was used for the first time to evaluate variability in drug dissolution data using Rhodamine-6G doped tablets within small volume USP 2 apparatus. The results were compared with tablets contained theophylline (THE) drug for conventional dissolution analysis. The impact of hydrodynamics, sampling point, dissolution media viscosity and pH were investigated to note effects on release of these two actives from the hydrophilic matrix tablets. As expected mixing performance was poor with complex and reduced velocities at the bottom of the vessel close to the tablet surface; this mixing became even worse as the viscosity of the fluid increased. The sampling point for dissolution can affect the results due to in-homogenous mixing within the vessel; this effect is exacerbated with higher viscosity dissolution fluids. The dissolution profiles of RH-6G measured via PLIF and THE measured using UV analysis were not statistically different demonstrating that RH-6G is an appropriate probe to mimic the release profile of a highly soluble drug. A linear correlation was accomplished between the release data of the drug and the dye (R(2)>0.9). The dissolution profile of the dye, obtained with the analysis of the PLIF images, can be used in order to evaluate how the viscosity and the mixing performance of USP 2 mini vessel affect the interpretation of the dissolution data of the targeted drug.


Assuntos
Química Farmacêutica/instrumentação , Liberação Controlada de Fármacos , Hidrodinâmica , Comprimidos/química , Viscosidade , Carboximetilcelulose Sódica/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Rodaminas/química , Solubilidade , Teofilina/química
5.
Water Res ; 85: 497-511, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26379205

RESUMO

A novel Euler-Lagrangian (EL) computational fluid dynamics (CFD) finite volume-based model to simulate the gas mixing of sludge for anaerobic digestion is developed and described. Fluid motion is driven by momentum transfer from bubbles to liquid. Model validation is undertaken by assessing the flow field in a labscale model with particle image velocimetry (PIV). Conclusions are drawn about the upscaling and applicability of the model to full-scale problems, and recommendations are given for optimum application.


Assuntos
Reologia/métodos , Anaerobiose , Reatores Biológicos , Gases , Hidrodinâmica , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...