Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(24): e202403652, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38578658

RESUMO

Germaaluminocenes are formed by salt metathesis reactions of dipotassium germacyclopentadienediides with pentamethylcyclopentadienylaluminum dichloride. The reactivity pattern of these sandwich complexes is determined by the electrophilic central aluminum atom and by the nucleophilic dicoordinated germanium center. Surprisingly, the products formed by reactions with Lewis acids, Lewis bases, amphiphiles and compounds with polar double bonds are those expected from the reaction of a hypothetical aluminagermapentafulvene with these types of reagents. This suggests that germaaluminocenes are synthetic equivalents to these pentafulvenes.

2.
Angew Chem Int Ed Engl ; 63(19): e202401467, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38470087

RESUMO

The salt metathesis reaction of dipotassium germacyclopentadienediide with aluminum(III) dichlorides provides either half-sandwich alumole complexes of germanium(II) or aluminylene germole complexes. Their molecular structure and the delocalized bonding situation, revealed by density functional theory (DFT) calculations, are equally described as isomeric aluminagerma[5]pyramidanes with either the germanium or the aluminum atom in the apical position of the pentagonal pyramid. The product formation and the selectivity of the reaction depends on the third substituent of the aluminum dichloride. Aryl-substituents favor the formation of alumole complexes and Cp*-substituents that of the isomeric germole complexes. With amino-substituents at the aluminum atom mixtures of both isomers are formed and the positional exchange of the two heteroatoms is shown by NMR spectroscopy. The alumole complexes of germanium(II) undergo facile reductive elimination of germanium and form the corresponding alumoles.

3.
Chem Sci ; 14(33): 8956-8961, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37621423

RESUMO

The regioselective synthesis of germasila-adamantanes with the germanium atoms in the bridgehead positions is described starting from cyclic precursors by a cationic sila-Wagner-Meerwein (SWM) rearrangement reaction. The SWM rearrangement allows also a deliberate shift of germanium atoms from the periphery and within the cage structures into the bridgehead positions. This opens the possibility for a synthesis of germasila-adamantanes of defined germanium content and controlled regiochemistry. In the same way that sila-adamantane can be regarded as a molecular building block of elemental silicon, the germasila-adamantane molecules represent cutouts of silicon/germanium alloys.

4.
Dalton Trans ; 50(46): 16945-16949, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34779457

RESUMO

Reaction of a 3,4-diphenylsilole with two neopentasilanyl groups attached to the 2- and 5-positions with one equivalent of KOtBu did not result in the expected silanide formation but yielded a silole allylic anion instead. The initially formed silanide added to a neighboring phenyl group, which then transfers a proton to the 2-position of the silole ring.

5.
Chem Rev ; 121(10): 5889-5985, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33861564

RESUMO

The history of silyl cations has all the makings of a drama but with a happy ending. Being considered reactive intermediates impossible to isolate in the condensed phase for decades, their actual characterization in solution and later in solid state did only fuel the discussion about their existence and initially created a lot of controversy. This perception has completely changed today, and silyl cations and their donor-stabilized congeners are now widely accepted compounds with promising use in synthetic chemistry. This review provides a comprehensive summary of the fundamental facts and principles of the chemistry of silyl cations, including reliable ways of their preparation as well as their physical and chemical properties. The striking features of silyl cations are their enormous electrophilicity and as such reactivity as super Lewis acids as well as fluorophilicity. Known applications rely on silyl cations as reactants, stoichiometric reagents, and promoters where the reaction success is based on their steady regeneration over the course of the reaction. Silyl cations can even be discrete catalysts, thereby opening the next chapter of their way into the toolbox of synthetic methodology.

6.
Acc Chem Res ; 53(2): 532-543, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32031772

RESUMO

Group 14 element heteroles are the heavier analogues of cyclopentadienes in which a heavier group 14 element atom replaces the sp3 carbon atom. In particular siloles and, to a somewhat smaller degree, germoles attracted considerable attention since the early 1990s due to their favorable photophysical properties which allowed the construction of OLEDs using group 14 element heteroles as emissive or electron-transport layers. Anions and in particular dianions derived from group 14 element heteroles have been of substantial interest due to the possible occurrence of Hückel aromaticity involving the heavier main group atom. Aromaticity is not the only notable electronic feature of silole and germole dianions; the spatial and energetic alignment of their frontier orbitals is equally remarkable. With a high lying lone pair at the heteroatom, which is orthogonal to a delocalized π-system, their frontier orbital sequence closely resembles that of N-heterocyclic carbene analogues. Despite these intriguing parallels between carbene analogues and silole and germole dianions, disappointingly little is known about their reactivity. The installation of trialkylsilyl substituents in the 2,5-positions of the heterocyclopentadiene ring as in K2[I] has a remarkable effect on the stability of silole and germole dianions and allows us to study their reactivity and to evaluate their synthetic potential in detail. Simple double salt metathesis reactions with different dihalides provided heterofulvenes. These were detected either as intermediates or, in the case of carbon dihalides, isolated in the form of their ylidic isomers II. In other cases, the heterofulvenes were the starting point for complex reaction sequences leading to novel binuclear complexes of titanium and zirconium III or for simple isomerization reactions that lead to bicyclohexene-type tetrylenes (BCH-tetrylenes) IV, a novel class of heavier carbenes. These bicyclic carbene analogues are significantly stabilized by homoconjugation between the electron deficient tetrel atom and the remote C═C double bond. Compound IV with E'R2═SiR2 and E = Si is a valence isomer of disilabenzene and is a stable derivative of the global minimum of the Si2C4H6 potential energy surface. With group 13 dihalides, as for example with boron dichlorides, topological closely related compounds V were isolated. These Ge(II) complexes of borole dianions are isolobal to half-sandwich complexes of main group elements such as aluminum(I) cyclopentadienide or can be viewed as nido-type clusters. These analogies already open a broad field for future investigations of their reactivity. Trialkylsilyl-substituted heterole dianions I provide a facile synthetic approach to several novel intriguing compound classes with the tetrel element in unusual coordination states. The reactivity and the synthetic potential of these new compounds is however widely unexplored and calls for future systematic studies. Gratifyingly, the periodic table of the elements stills holds a lot of potential for future research on the reactivity of silole and germole dianions.

7.
Chem Sci ; 11(11): 2982-2986, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34122799

RESUMO

The reactions of dipotassium germacyclopentadienediide with two Group 13 dichlorides, Cp*BCl2 and Cp*AlCl2, yield two structurally different products. In the case of boron a borole complex of germanium(ii) is obtained. The aluminium halide gives an unprecedented neutral germaaluminocene. Both compounds were fully characterised by multinuclear NMR spectroscopy supported by DFT computations. The molecular structure of the germaaluminocene was determined by XRD.

8.
Chemistry ; 25(42): 9861-9865, 2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31095811

RESUMO

Efforts to prepare an elusive donor-free phosphenium ion, [R2 P]+ , led us to synthesize functionalized fluorophosphonium cations of the type [R2 P(F)X]+ (X=SiEt3 , H, F), which were obtained from the related neutral fluorophosphines R2 PF and R2 PF3 upon protonation and reaction with solvated [Et3 Si]+ ions (R=2,6-Mes2 C6 H3 ). The hypothetical reductive elimination of [R2 P(F)SiEt3 ]+ and [R2 P(F)H]+ affording [R2 P]+ , Et3 SiF and HF, respectively, was calculated to be endothermic by 40.1 and 190.6 kJ mol-1 .

9.
Chemistry ; 25(4): 1098-1105, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30450653

RESUMO

The synthesis of the germacalicene 7 from the reaction of the dipotassium germole dianion K2 [6] with 1,2-bis-diisopropylamino-3-chlorocyclopropenyl perchlorate is reported. Based on the crystal structure analysis and the results of DFT calculations, the germacalicene 7 can be viewed as a cyclopropenium germacyclopentadienide ylide that is isoelectronic to α-cationic phosphanes. First reactivity studies revealed its nucleophilic character and resulted in the isolation of the air- and moisture-stable carbonyl iron complex 15 and the cationic silver complex 20. One-electron oxidation of the germacalicene 7 was achieved by its reaction with [Ph3 C][B(C6 F5 )4 ] and the bis-cationic Ge-Ge-bonded dimer 22 was isolated.

10.
Angew Chem Int Ed Engl ; 57(40): 13319-13324, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30070743

RESUMO

The synthesis of two η5 -aminoborole complexes of germanium(II) from the reaction of a germole dianion with aminoboron dichlorides is reported. This reaction constitutes a remarkable example of a germole-to-borole transformation. The two aminoborole complexes of germanium(II) were fully characterized by multinuclear NMR spectroscopy, IR spectroscopy, HRMS, and, in one case, by X-ray crystallography. The results of quantum-mechanical calculations favor the electronic structure of a half-sandwich complex of GeII over an ionic representation with a germanium dication stabilized by an aromatic aminoborole dianion.

11.
Dalton Trans ; 47(17): 5985-5996, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29658036

RESUMO

The reactions of two cyclic germylene phosphane adducts with monosubstituted acetylenes caused the formation of spirocyclic germanes, which is postulated to occur by double acetylene insertion into germylene attached bonds. Further insertion of the formed cyclic divinylgermylene into transannular Si-Si or Si-Ge bonds provides the spirocyclic germanes. Thermal treatment of two germacyclopropenes, formed by the reaction of the two cyclic germylene phosphane adducts with tolane, also produced spirocyclogermanes. The structures of the latter require, however, a more complicated mechanistic proposal.

12.
Chemistry ; 22(51): 18512-18521, 2016 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-27862421

RESUMO

Silylated germylene-PMe3 adducts exchange their phosphane moiety smoothly for an N-heterocyclic carbene or isocyanide species to form their respective base adducts. Reaction of the silylated germylene-PMe3 adducts with monosubstituted alkynes produce germylene adducts with the alkyne inserted into a Ge-Si bond. A computational study of this process provides evidence for the initial formation of a germirene, which rearranges to a vinylgermylene species. The thermodynamic driving force for this reaction is provided by subsequent adduct formation with PMe3 . Reaction of the PMe3 adduct of bis[(trimethylsilyl)silyl]germylene with disubstituted alkynes leads to the formation of stable germirenes, which can be isomerized further to silagermetes.

13.
J Am Chem Soc ; 138(21): 6886-92, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27195490

RESUMO

The installation of structural complex oligosilanes from linear starting materials by Lewis acid induced skeletal rearrangement reactions was studied under stable ion conditions. The produced cations were fully characterized by multinuclear NMR spectroscopy at low temperature, and the reaction course was studied by substitution experiments. The results of density functional theory calculations indicate the decisive role of attractive dispersion forces between neighboring trimethylsilyl groups for product formation in these rearrangement reactions. These attractive dispersion interactions control the course of Wagner-Meerwein rearrangements in oligosilanes, in contrast to the classical rearrangement in hydrocarbon systems, which are dominated by electronic substituent effects such as resonance and hyperconjugation.

14.
Chemistry ; 22(23): 7970-7, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27105609

RESUMO

The ionization of 1,1-dihydridocyclopentasilane 7 has been found to yield the cyclic polysilanylsilyl cation 8 instead of the expected hydrogen-substituted silylium ion 6. The silyl cation 8 is stabilized by the formation of an intramolecular Si-H-Si bridge, which also provides the thermodynamic driving force for its formation. In general, the preference for the formation of Si-H-Si bridges can be used to scavenge and identify transient intermediates in the Lewis acid induced rearrangement of polysilanes. The validity of this concept has been demonstrated for one central step in this chemistry, the ring-contraction reaction of cyclohexasilanes to form silylcyclopentasilanes.

15.
Organometallics ; 34(15): 3756-3763, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26294805

RESUMO

The rearrangement of tris(trimethylsilyl)silyltrimethylgermane 1 to give tetrakis(trimethylsilyl)germane 2 was investigated as a typical example for Lewis acid catalyzed Wagner-Meerwein-type rearrangements of polysilanes and polygermasilanes. Direct 29Si NMR spectroscopic evidence is provided for several cationic intermediates during the reaction. The identity of these species was verified by independent synthesis and NMR characterization, and their transformation was followed by NMR spectroscopy.

16.
Chemistry ; 20(30): 9357-66, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24981992

RESUMO

In the presence of PMe3 or N-heterocyclic carbenes, the reaction of oligosilanylene dianions with GeCl2⋅dioxane gives germylene-base adducts. After base abstraction, the free germylenes can dimerize by formation of a digermene. An electrochemical and theoretical study of a bicyclic tetrasilylated digermene revealed formation of a comparably stable radical anion and a more reactive radical cation, which were characterized further by UV/Vis and ESR spectroscopy.

17.
Organometallics ; 32(11): 3404-3410, 2013 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-23874054

RESUMO

The preparation of triethylphosphine adducts of cyclic disilylated or digermylated germylenes was achieved by reaction of 1,4-dipotassio-1,1,4,4-tetrakis(trimethylsilyl)tetramethyltetrasilane with GeBr2·(dioxane) and PEt3. Phosphine abstraction with B(C6F5)3 allowed formation of the base-free germylenes, which undergo 1,2-trimethylsilyl shifts to the germylene atom to form the respective silagermene or digermene, which further dimerize in [2 + 2] cycloadditions to tricyclic compounds. The reasons responsible for the germylenes' completely different reactivities in comparison to the previously studied analogous stannylenes and plumbylenes were elucidated in a theoretical study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...