Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 104: 105157, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38821778

RESUMO

BACKGROUND: Tight-fitting masks and respirators, in manikin studies, improved aerosol source control compared to loose-fitting masks. Whether this translates to humans is not known. METHODS: We compared efficacy of masks (cloth and surgical) and respirators (KN95 and N95) as source control for SARS-CoV-2 viral load in exhaled breath of volunteers with COVID-19 using a controlled human experimental study. Volunteers (N = 44, 43% female) provided paired unmasked and masked breath samples allowing computation of source-control factors. FINDINGS: All masks and respirators significantly reduced exhaled viral load, without fit tests or training. A duckbill N95 reduced exhaled viral load by 98% (95% CI: 97%-99%), and significantly outperformed a KN95 (p < 0.001) as well as cloth and surgical masks. Cloth masks outperformed a surgical mask (p = 0.027) and the tested KN95 (p = 0.014). INTERPRETATION: These results suggest that N95 respirators could be the standard of care in nursing homes and healthcare settings when respiratory viral infections are prevalent in the community and healthcare-associated transmission risk is elevated. FUNDING: Defense Advanced Research Projects Agency, National Institute of Allergy and Infectious Diseases, Centers for Disease Control and Prevention, the Bill & Melinda Gates Foundation, and The Flu Lab.


Assuntos
COVID-19 , Máscaras , Respiradores N95 , SARS-CoV-2 , Carga Viral , Humanos , COVID-19/prevenção & controle , COVID-19/transmissão , COVID-19/virologia , Feminino , SARS-CoV-2/isolamento & purificação , Masculino , Adulto , Respiradores N95/virologia , Pessoa de Meia-Idade , Eliminação de Partículas Virais , Aerossóis , Aerossóis e Gotículas Respiratórios/virologia , Expiração , Testes Respiratórios/métodos
2.
ACS Appl Mater Interfaces ; 15(13): 16714-16722, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36961995

RESUMO

Selective oxidation reactions are an important class of the current chemical industry and will be highly important for future sustainable chemical production. Especially, the selective oxidation of primary alcohols is expected to be of high future interest, as alcohols can be obtained on technical scales from biomass fermentation. The oxidation of primary alcohols produces aldehydes, which are important intermediates. While selective methanol oxidation is industrially established, the commercial catalyst suffers from deactivation. Ethanol selective oxidation is not commercialized but would give access to sustainable acetaldehyde production when using renewable ethanol. In this work, it is shown that employing 2D MXenes as building blocks allows one to design a nanostructured oxide catalyst composed of mixed valence vanadium oxides, which outperforms on both reactions known materials by nearly an order of magnitude in activity, while showing high selectivity and stability. The study shows that the synthesis route employing 2D materials is key to obtain these attractive catalysts. V4C3Tx MXene structured as an aerogel precursor needs to be employed and mildly oxidized in an alcohol and oxygen atmosphere to result in the aspired nanostructured catalyst composed of mixed valence VO2, V6O13, and V3O7. Very likely, the bulk stable reduced valence state of the material together coupled with the nanorod arrangement allows for unprecedented oxygen mobility as well as active sites and results in an ultra-active catalyst.

3.
Clin Infect Dis ; 76(5): 786-794, 2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36285523

RESUMO

BACKGROUND: Aerosol inhalation is recognized as the dominant mode of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission. Three highly transmissible lineages evolved during the pandemic. One hypothesis to explain increased transmissibility is that natural selection favors variants with higher rates of viral aerosol shedding. However, the extent of aerosol shedding of successive SARS-CoV-2 variants is unknown. We aimed to measure the infectivity and rate of SARS-CoV-2 shedding into exhaled breath aerosol (EBA) by individuals during the Delta and Omicron waves and compared those rates with those of prior SARS-CoV-2 variants from our previously published work. METHODS: Individuals with coronavirus disease 2019 (COVID-19) (n = 93; 32 vaccinated and 20 boosted) were recruited to give samples, including 30-minute breath samples into a Gesundheit-II EBA sampler. Samples were quantified for viral RNA using reverse-transcription polymerase chain reaction and cultured for virus. RESULTS: Alpha (n = 4), Delta (n = 3), and Omicron (n = 29) cases shed significantly more viral RNA copies into EBAs than cases infected with ancestral strains and variants not associated with increased transmissibility (n = 57). All Delta and Omicron cases were fully vaccinated and most Omicron cases were boosted. We cultured virus from the EBA of 1 boosted and 3 fully vaccinated cases. CONCLUSIONS: Alpha, Delta, and Omicron independently evolved high viral aerosol shedding phenotypes, demonstrating convergent evolution. Vaccinated and boosted cases can shed infectious SARS-CoV-2 via EBA. These findings support a dominant role of infectious aerosols in transmission of SARS-CoV-2. Monitoring aerosol shedding from new variants and emerging pathogens can be an important component of future threat assessments and guide interventions to prevent transmission.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Aerossóis e Gotículas Respiratórios , RNA Viral
4.
Inorg Chem ; 61(28): 10634-10641, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35775787

RESUMO

The research in MAX phases is mainly concentrated on the investigation of carbides rather than nitrides (currently >150 carbides and only <15 nitrides) that are predominantly synthesized by conventional solid-state techniques. This is not surprising since the preparation of nitrides and carbonitrides is more demanding due to the high stability and low diffusion rate of nitrogen-containing compounds. This leads to several drawbacks concerning potential variations in the chemical composition of the MAX phases as well as control of morphology, the two aspects that directly affect the resulting materials properties. Here, we report how alternative solid-state hybrid techniques solve these limitations by combining conventional techniques with nonconventional precursor synthesis methods, such as the "urea-glass" sol-gel or liquid ammonia method. We demonstrate the synthesis and morphology control within the V-Ga-C-N system by preparing the MAX phase carbide and nitride─the latter in the form of bulkier and more defined smaller particle structures─as well as a hitherto unknown carbonitride V2GaC1-xNx MAX phase. This shows the versatility of hybrid methods starting, for example, from wet chemically obtained precursors that already contain all of the ingredients needed for carbonitride formation. All products are characterized in detail by X-ray powder diffraction, electron microscopy, and electron and X-ray photoelectron spectroscopies to confirm their structure and morphology and to detect subtle differences between the different chemical compositions.

5.
Clin Infect Dis ; 75(1): e241-e248, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34519774

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemiology implicates airborne transmission; aerosol infectiousness and impacts of masks and variants on aerosol shedding are not well understood. METHODS: We recruited coronavirus disease 2019 (COVID-19) cases to give blood, saliva, mid-turbinate and fomite (phone) swabs, and 30-minute breath samples while vocalizing into a Gesundheit-II, with and without masks at up to 2 visits 2 days apart. We quantified and sequenced viral RNA, cultured virus, and assayed serum samples for anti-spike and anti-receptor binding domain antibodies. RESULTS: We enrolled 49 seronegative cases (mean days post onset 3.8 ±â€…2.1), May 2020 through April 2021. We detected SARS-CoV-2 RNA in 36% of fine (≤5 µm), 26% of coarse (>5 µm) aerosols, and 52% of fomite samples overall and in all samples from 4 alpha variant cases. Masks reduced viral RNA by 48% (95% confidence interval [CI], 3 to 72%) in fine and by 77% (95% CI, 51 to 89%) in coarse aerosols; cloth and surgical masks were not significantly different. The alpha variant was associated with a 43-fold (95% CI, 6.6- to 280-fold) increase in fine aerosol viral RNA, compared with earlier viruses, that remained a significant 18-fold (95% CI, 3.4- to 92-fold) increase adjusting for viral RNA in saliva, swabs, and other potential confounders. Two fine aerosol samples, collected while participants wore masks, were culture-positive. CONCLUSIONS: SARS-CoV-2 is evolving toward more efficient aerosol generation and loose-fitting masks provide significant but only modest source control. Therefore, until vaccination rates are very high, continued layered controls and tight-fitting masks and respirators will be necessary.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/prevenção & controle , Humanos , Máscaras , RNA Viral , Aerossóis e Gotículas Respiratórios
6.
Environ Int ; 137: 105537, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32028176

RESUMO

Strategies to protect building occupants from the risk of acute respiratory infection (ARI) need to consider ventilation for its ability to dilute and remove indoor bioaerosols. Prior studies have described an association of increased self-reported colds and influenza-like symptoms with low ventilation but have not combined rigorous characterization of ventilation with assessment of laboratory confirmed infections. We report a study designed to fill this gap. We followed laboratory confirmed ARI rates and measured CO2 concentrations for four months during the winter-spring of 2018 in two campus residence halls: (1) a high ventilation building (HVB) with a dedicated outdoor air system that supplies 100% of outside air to each dormitory room, and (2) a low ventilation building (LVB) that relies on infiltration as ventilation. We enrolled 11 volunteers for a total of 522 person-days in the HVB and 109 volunteers for 6069 person-days in the LVB, and tested upper-respiratory swabs from symptomatic cases and their close contacts for the presence of 44 pathogens using a molecular assay. We observed one ARI case in the HVB (0.70/person-year) and 47 in the LVB (2.83/person-year). Simultaneously, 154 CO2 sensors distributed primarily in the dormitory rooms collected 668,390 useful data points from over 1 million recorded data points. Average and standard deviation of CO2 concentrations were 1230 ppm and 408 ppm in the HVB, and 1492 ppm and 837 ppm in the LVB, respectively. Importantly, this study developed and calibrated multi-zone models for the HVB with 229 zones and 983 airflow paths, and for the LVB with 529 zones and 1836 airflow paths by using a subset of CO2 data for model calibration. The models were used to calculate ventilation rates in the two buildings and potential for viral aerosol migration between rooms in the LVB. With doors and windows closed, the average ventilation rate was 12 L/s in the HVB dormitory rooms and 4 L/s in the LVB dormitory rooms. As a result, residents had on average 6.6 L/(s person) of outside air in the HVB and 2.3 L/(s person) in the LVB. LVB rooms located at the leeward side of the building had smaller average ventilation rates, as well as a somewhat higher ARI incidence rate and average CO2 concentrations when compared to those values in the rooms located at the windward side of the building. Average ventilation rates in twenty LVB dormitory rooms increased from 2.3 L/s to 7.5 L/s by opening windows, 3.6 L/s by opening doors, and 8.8 L/s by opening both windows and doors. Therefore, opening both windows and doors in the LVB dormitory rooms can increase ventilation rates to the levels comparable to those in the HVB. But it can also have a negative effect on thermal comfort due to low outdoor temperatures. Simulation results identified an aerobiologic pathway from a room occupied by an index case of influenza A to a room occupied by a possible secondary case.


Assuntos
Poluição do Ar em Ambientes Fechados , Infecções Respiratórias , Poluição do Ar em Ambientes Fechados/análise , Feminino , Habitação , Humanos , Masculino , Maryland , Infecções Respiratórias/epidemiologia , Estudantes , Temperatura , Universidades , Ventilação , Adulto Jovem
7.
Inorg Chem ; 58(24): 16609-16617, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31769972

RESUMO

The use of low-temperature solution synthesis followed by a brief annealing step allows metastable single-phase Co3B nanoparticles to be obtained, with sizes ranging from 11 to 22 nm. The particles are ferromagnetic with a saturation magnetization of 91 A m2 kg-1 (corresponding to 1.02 µB/Co) and a coercive field of 0.14 T at 5 K, retaining the semihard magnetic properties of bulk Co3B. They display a magnetic blocking temperature of 695 K and a Curie temperature near 710 K, but the measurement of these high-temperature properties was complicated by decomposition of the particles during heating in the magnetometer. Additionally, the nanoparticles of Co3B were investigated as an electrocatalyst in the oxygen evolution reaction and showed a low onset potential of 1.55 V vs RHE. XPS measurements were performed before and after the electrocatalytic measurements to study the surface of the catalyst, to pinpoint what appear to be the active surface species.

8.
ChemSusChem ; 11(18): 3150-3156, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30047577

RESUMO

High-performance catalysts for the oxygen-evolution reaction in water electrolysis are usually based on expensive and rare elements. Herein, mixed-metal borides are shown to be competitive with established electrocatalysts like noble metal oxides and other transition-metal(oxide)-based catalysts. Iron incorporation into nanoscale dicobalt boride results in excellent activity and stability in alkaline solutions. (Co0.7 Fe0.3 )2 B shows an overpotential of η=0.33 V (1.56 V vs. RHE) at 10 mA cm-2 in 1 m KOH with a very low onset potential of ≈1.5 V vs. RHE, comparable to the performance of IrO2 and RuO2 . XPS shows that the original catalyst is modified under the reaction conditions and indicates that CoOOH and Co(OH)2 are formed as active surface species, whereas the Fe remains in the catalyst, contributing to an improved catalyst performance. The nanoscale borides are obtained by a one-step solution synthesis, calcined, and characterized by XRD, energy-dispersive X-ray spectroscopy, and SEM. Single crystals of (Co1-x Fex )2 B grown under chemical transport conditions were used for an unambiguous specification of the nanostructured particles by relating the cobalt/iron ratio to the lattice parameters.

9.
Dalton Trans ; 47(16): 5703-5713, 2018 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-29632930

RESUMO

Polycrystalline powders of La3Ga5SiO14 (LGSi), La3Ga5GeO14 (LGGe), and La3Ga5TiO14 (LGTi) doped with Eu3+ were studied with respect to their use as luminescent materials in solid state lighting based on light-emitting diodes. The langasites were synthesized with up to 35% of trivalent europium to achieve the highest possible doping amount. According to diffuse reflection measurements the undoped compounds have band gap energies of 4.51 eV (LGSi), 4.54 eV (LGGe) and 4.07 eV (LGTi). The luminescence behavior between 77 K and 500 K was investigated, including excitation, emission and lifetime measurements to analyze the impact of the structural differences between the three langasites on the spectroscopic properties of the materials. Depending on the excitation wavelengths, 300 nm (charge transfer) and 394 nm (4f levels, i.e.7F0 → 5L6), different quenching temperatures were achieved for LGSi : Eu3+ 20% (TQ,300 = 438 K, TQ,394 = 422 K), LGGe : Eu3+ 20% (TQ,300 = 325 K, TQ,394 = 441 K) and LGTi : Eu3+ 20% (TQ,300 = 500 K, TQ,394 = 467 K). The quenching observed can be explained by three semi-quantitative configurational coordinate diagrams. Independent from the excitation wavelength and the temperature (77-300 K) decay times of 1.1 ms were measured. At room temperature and with an excitation wavelength of 394 nm maximum quantum efficiencies of 40% for LGSi : Eu, of 80% for LGGe : Eu, and of 81% for LGTi : Eu were reached. Finally, to prove the applicability as red LED phosphors, the langasites were built into LEDs with (In,Ga)N chips emitting at 394 nm.

10.
Materials (Basel) ; 11(2)2018 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-29439441

RESUMO

In the present study, the effect of the chemical and phase composition on the thermal properties of silicon oxide carbides (SiOC) has been investigated. Dense monolithic SiOC materials with various carbon contents were prepared and characterized with respect to their thermal expansion, as well as thermal conductivity. SiOC glass has been shown to exhibit low thermal expansion (e.g., ca. 3.2 × 10-6 K-1 for a SiOC sample free of segregated carbon) and thermal conductivity (ca. 1.5 W/(m∙K)). Furthermore, it has been observed that the phase separation, which typically occurs in SiOC exposed to temperatures beyond 1000-1200 °C, leads to a decrease of the thermal expansion (i.e., to 1.83 × 10-6 K-1 for the sample above); whereas the thermal conductivity increases upon phase separation (i.e., to ca. 1.7 W/(m∙K) for the sample mentioned above). Upon adjusting the amount of segregated carbon content in SiOC, its thermal expansion can be tuned; thus, SiOC glass ceramics with carbon contents larger than 10-15 vol % exhibit similar coefficients of thermal expansion to that of the SiOC glass. Increasing the carbon and SiC content in the studied SiOC glass ceramics leads to an increase in their thermal conductivity: SiOC with relatively large carbon and silicon carbides (SiC) volume fractions (i.e., 12-15 and 20-30 vol %, respectively) were shown to possess thermal conductivities in the range from 1.8 to 2.7 W/(m∙K).

11.
Sci Rep ; 8(1): 602, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29330407

RESUMO

Recently developed laser-based measurement techniques are used to image the temperatures and velocities in gas flows. They require new phosphor materials with an unprecedented combination of properties. A novel synthesis procedure is described here; it results in hierarchically structured, hollow microspheres of Eu3+-doped Y2O3, with unusual particle sizes and very good characteristics compared to full particles. Solution-based precipitation on polymer microballoons produces very stable and luminescent, ceramic materials of extremely low density. As a result of the - compared to established template-directed syntheses - reduced mass of polymer that is lost upon calcination, micron-sized particles are obtained with mesoporous walls, low defect concentrations, and nanoscale wall thicknesses. They can be produced with larger diameters (~25 µm) compared to known hollow spheres and exhibit an optimized flow behavior. Their temperature sensing properties and excellent fluidic follow-up behavior are shown by determining emission intensity ratios in a specially designed heating chamber. Emission spectroscopy and imaging, electron microscopy and X-ray diffraction results are presented for aerosolizable Y2O3 with an optimized dopant concentration (8%). Challenges in the field of thermofluids can be addressed by combined application of thermometry and particle image velocimetry with such hollow microparticles.

12.
Proc Natl Acad Sci U S A ; 115(5): 1081-1086, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29348203

RESUMO

Little is known about the amount and infectiousness of influenza virus shed into exhaled breath. This contributes to uncertainty about the importance of airborne influenza transmission. We screened 355 symptomatic volunteers with acute respiratory illness and report 142 cases with confirmed influenza infection who provided 218 paired nasopharyngeal (NP) and 30-minute breath samples (coarse >5-µm and fine ≤5-µm fractions) on days 1-3 after symptom onset. We assessed viral RNA copy number for all samples and cultured NP swabs and fine aerosols. We recovered infectious virus from 52 (39%) of the fine aerosols and 150 (89%) of the NP swabs with valid cultures. The geometric mean RNA copy numbers were 3.8 × 104/30-minutes fine-, 1.2 × 104/30-minutes coarse-aerosol sample, and 8.2 × 108 per NP swab. Fine- and coarse-aerosol viral RNA were positively associated with body mass index and number of coughs and negatively associated with increasing days since symptom onset in adjusted models. Fine-aerosol viral RNA was also positively associated with having influenza vaccination for both the current and prior season. NP swab viral RNA was positively associated with upper respiratory symptoms and negatively associated with age but was not significantly associated with fine- or coarse-aerosol viral RNA or their predictors. Sneezing was rare, and sneezing and coughing were not necessary for infectious aerosol generation. Our observations suggest that influenza infection in the upper and lower airways are compartmentalized and independent.


Assuntos
Microbiologia do Ar , Expiração , Influenza Humana/transmissão , Influenza Humana/virologia , Infecções Respiratórias/virologia , Aerossóis , Índice de Massa Corporal , Tosse , Feminino , Humanos , Masculino , Modelos Teóricos , Prevalência , RNA Viral/genética , Sistema Respiratório , Estações do Ano , Estudantes , Temperatura , Universidades , Vacinação , Adulto Jovem
13.
Inorg Chem ; 54(22): 10873-7, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26523926

RESUMO

We trapped an unknown metastable boride by applying low-temperature solution synthesis. Single-phase nickel boride, Ni7B3, was obtained as bulk samples of microcrystalline powders when annealing the amorphous, nanoscale precipitate that is formed in aqueous solution of nickel chloride upon reaction with sodium tetrahydridoborate. Its crystal structure was solved based on a disordered Th7Fe3-type model (hexagonal crystal system, space group P63mc, no. 186, a = 696.836(4) pm, c = 439.402(4) pm), using synchrotron X-ray powder data. Magnetic measurements reveal paramagnetism, which is in accordance with quantum chemical calculations. According to high-temperature X-ray diffraction and differential scanning calorimetry this nickel boride phase has a narrow stability window between 300 and 424 °C. It crystallizes at ca. 350 °C, then starts decomposing to form Ni3B and Ni2B above 375 °C, and shows an exothermic effect at 424 °C.

14.
Inorg Chem ; 54(17): 8761-8, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26266629

RESUMO

A new polymorph of MnP4 was prepared by reaction of the elements via chemical vapor transport with iodine as transporting agent. The crystal structure was refined using single-crystal diffraction data (space group Cc, no. 9, a = 5.1049(8) Å, b = 10.540(2) Å, c = 10.875(2) Å, ß = 93.80(2)°). The phase is called γ-MnP4 as it is isostructural with γ-FeP4. It is the fourth reported binary polymorph in the MnP4 system, all of which are stacking variants of nets built with manganese and phosphorus atoms. In γ-MnP4, there are two Mn-Mn distances (2.93 and 3.72 Å) arising from a Peierls-like distortion effectively forming Mn2 dumbbells in the structure. Magnetic and electrical conductivity measurements show diamagnetism and a small anisotropic band gap (100-200 meV) with significantly enhanced conductivity along the crystallographic a axis. Calculations of the electronic and vibrational (phonon) structures show the P-P and Mn-P bonds within the nets are mainly responsible for the stability of the phase. The similar bonding motifs of the polymorphs give rise to the existence of numerous dynamically stable variants. The calculated Helmholtz energy shows the polymorph formation to be closely tied to temperature with the 6-MnP4 structure favorable at low temperatures, the 2-MnP4 favorable between approximately 800 and 2000 K, and 8-MnP4 preferred at high temperatures.

15.
Chemistry ; 21(22): 8177-81, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25891681

RESUMO

The structural and electronic properties of MnB4 were studied by high-temperature powder X-ray diffraction and measurements of the conductivity and Seebeck coefficient on spark-plasma-sintered samples. A transition from the room-temperature monoclinic structure (space group P2(1)/c) to a high-temperature orthorhombic structure (space group Pnnm) was observed at about 650 K. The material remained semiconducting after the transition, but its behavior changed from p-type to n-type. (55)Mn NMR measurements revealed an isotropic chemical shift of -1315 ppm, confirming an oxidation state of Mn close to I. Solid solutions of Cr(1-x)Mn(x)B4 (two phases in space groups Pnnm and P2(1)/c) were synthesized for the first time. In addition, nanoindentation studies yielded values of (496±26) and (25.3±1.7) GPa for the Young's modulus and hardness, respectively, compared to values of 530 and 37 GPa obtained by DFT calculations.

16.
Chimia (Aarau) ; 68(5): 321-4, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24983808

RESUMO

Three types of boron-rich compounds in unusual bonding situations are described: First, salts that contain closo-hydroborate anions and exhibit hydrogen and dihydrogen bonds and a strong ammonia network; second, boron-rich metal borides with an unexpected metal-metal bond stabilized by Peierls distortion; and third, nanoscale metal borides that bind selectively to certain heptapeptides identified by the phage display technique.


Assuntos
Amônia/química , Boranos/química , Complexos de Coordenação/química , Níquel/química , Fragmentos de Peptídeos/química , Elementos de Transição/química , Ligação de Hidrogênio , Modelos Moleculares
17.
BMC Biotechnol ; 14: 12, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24512376

RESUMO

BACKGROUND: Metal borides are a class of inorganic solids that is much less known and investigated than for example metal oxides or intermetallics. At the same time it is a highly versatile and interesting class of compounds in terms of physical and chemical properties, like semiconductivity, ferromagnetism, or catalytic activity. This makes these substances attractive for the generation of new materials. Very little is known about the interaction between organic materials and borides. To generate nanostructured and composite materials which consist of metal borides and organic modifiers it is necessary to develop new synthetic strategies. Phage peptide display libraries are commonly used to select peptides that bind specifically to metals, metal oxides, and semiconductors. Further, these binding peptides can serve as templates to control the nucleation and growth of inorganic nanoparticles. Additionally, the combination of two different binding motifs into a single bifunctional phage could be useful for the generation of new composite materials. RESULTS: In this study, we have identified a unique set of sequences that bind to amorphous and crystalline nickel boride (Ni3B) nanoparticles, from a random peptide library using the phage display technique. Using this technique, strong binders were identified that are selective for nickel boride. Sequence analysis of the peptides revealed that the sequences exhibit similar, yet subtle different patterns of amino acid usage. Although a predominant binding motif was not observed, certain charged amino acids emerged as essential in specific binding to both substrates. The 7-mer peptide sequence LGFREKE, isolated on amorphous Ni3B emerged as the best binder for both substrates. Fluorescence microscopy and atomic force microscopy confirmed the specific binding affinity of LGFREKE expressing phage to amorphous and crystalline Ni3B nanoparticles. CONCLUSIONS: This study is, to our knowledge, the first to identify peptides that bind specifically to amorphous and to crystalline Ni3B nanoparticles. We think that the identified strong binding sequences described here could potentially serve for the utilisation of M13 phage as a viable alternative to other methods to create tailor-made boride composite materials or new catalytic surfaces by a biologically driven nano-assembly synthesis and structuring.


Assuntos
Compostos de Boro/química , Biblioteca de Peptídeos , Peptídeos/química , Sequência de Aminoácidos , Bacteriófago M13/metabolismo , Ligação Competitiva , Metais/química , Microscopia de Força Atômica , Microscopia de Fluorescência , Nanopartículas/química
18.
Angew Chem Int Ed Engl ; 53(6): 1684-8, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24453115

RESUMO

Tetraborides of chromium and manganese exhibit an unusual boron-atom framework that resembles the hypothetical tetragonal diamond. They are believed to be very hard. Single crystals of MnB4 have now been grown. The compound crystallizes in the monoclinic crystal system (space group P21 /c) with a structure that has four crystallographically independent boron-atom positions, as confirmed by (11) B MAS-NMR spectroscopy. An unexpected short distance between the Mn atoms suggests a double Mn-Mn bond and is caused by Peierls distortion. The structure was solved using group-subgroup-relationships. DFT calculations indicate Mn(I) centers and paramagnetism, as confirmed by magnetic measurements. The density of states shows a pseudo-band gap at the Fermi energy and semiconducting behavior was observed for MnB4 .

19.
Inorg Chem ; 52(8): 4692-9, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23537308

RESUMO

Ammonia complexes of hydroborates may be potentially promising materials for ammonia storage or indirect hydrogen storage. The title compounds contain 20.04-52.23 wt % ammonia and 5.94-13.01 wt % hydrogen. They were synthesized in liquid ammonia, using (NBu4)2[B12H12] and Li2[B10H10] as starting materials. [Li(NH3)4]2[B12H12]·2NH3 (1) crystallizes in the monoclinic crystal system (space group P2(1)/c, a = 9.183(2) Å, b = 8.133(1) Å, c = 16.375 Å, ß = 110.54(1)°, V = 1143.97(40) Å(3), Z = 2). The compound is a direct precursor of the hydrogen storage compound Li2[B12H12]·7NH3. Hydroborates of the heavier alkali metals were found to crystallize in the orthorhombic crystal system: Rb2[B12H12]·8NH3 (2) (space group Pnnm, a = 14.4166(6) Å, b = 7.8221(3) Å, c = 9.5792(4) Å, V = 1080.23(8) Å(3), Z = 2), Cs2[B12H12]·6NH3 (3) (space group Pbca, a = 7.7569(8) Å, b = 14.087(2) Å, c = 18.075(2) Å, V = 1974.99(30) Å(3), Z = 4), and Rb2[B10H10]·5NH3 (4) (space group Pnma, a = 13.9510(7) Å, b = 8.675(2) Å, c = 13.966(2) Å, V = 1690.2(3) Å(3), Z = 4), as determined by single crystal X-ray diffraction. The structures are discussed briefly.

20.
Inorg Chem ; 52(2): 540-2, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23298445

RESUMO

Chromium tetraboride [orthorhombic, space group Pnnm (No. 58), a = 474.65(9) pm, b = 548.0(1) pm, c = 286.81(5) pm, and R value (all data) = 0.041], formerly described in space group Immm, was found not to be superhard, despite several theory-based prognoses. CrB(4) shows an almost temperature-independent paramagnetism, consistent with low-spin Cr(I) in a metallic compound. Conductivity measurements confirm the metallic character.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...