Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 24(12): e57238, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37929625

RESUMO

Interferons (IFN) are crucial antiviral and immunomodulatory cytokines that exert their function through the regulation of a myriad of genes, many of which are not yet characterized. Here, we reveal that lipin-2, a phosphatidic acid phosphatase whose mutations produce an autoinflammatory syndrome known as Majeed syndrome in humans, is regulated by IFN in a STAT-1-dependent manner. Lipin-2 inhibits viral replication both in vitro and in vivo. Moreover, lipin-2 also acts as a regulator of inflammation in a viral context by reducing the signaling through TLR3 and the generation of ROS and release of mtDNA that ultimately activate the NLRP3 inflammasome. Inhibitors of mtDNA release from mitochondria restrict IL-1ß production in lipin-2-deficient animals in a model of viral infection. Finally, analyses of databases from COVID-19 patients show that LPIN2 expression levels negatively correlate with the severity of the disease. Overall, these results uncover novel regulatory mechanisms of the IFN response driven by lipin-2 and open new perspectives for the future management of patients with LPIN2 mutations.


Assuntos
DNA Mitocondrial , Interferons , Animais , Humanos , Fosfatidato Fosfatase/genética , Fosfatidato Fosfatase/metabolismo
2.
Front Cell Infect Microbiol ; 13: 1187193, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37313341

RESUMO

The human immunodeficiency virus (HIV), responsible of the Acquired Immune Deficiency Syndrome (AIDS), continues to be a major global public health issue with any cure or vaccine available. The Interferon-stimulated gene 15 (ISG15) encodes a ubiquitin-like protein that is induced by interferons and plays a critical role in the immune response. ISG15 is a modifier protein that covalently binds to its targets via a reversible bond, a process known as ISGylation, which is the best-characterized activity of this protein to date. However, ISG15 can also interact with intracellular proteins via non-covalent binding or act as a cytokine in the extracellular space after secretion. In previous studies we proved the adjuvant effect of ISG15 when delivered by a DNA-vector in heterologous prime-boost combination with a Modified Vaccinia virus Ankara (MVA)-based recombinant virus expressing HIV-1 antigens Env/Gag-Pol-Nef (MVA-B). Here we extended these results evaluating the adjuvant effect of ISG15 when expressed by an MVA vector. For this, we generated and characterized two novel MVA recombinants expressing different forms of ISG15, the wild-type ISG15GG (able to perform ISGylation) or the mutated ISG15AA (unable to perform ISGylation). In mice immunized with the heterologous DNA prime/MVA boost regimen, the expression of the mutant ISG15AA from MVA-Δ3-ISG15AA vector in combination with MVA-B induced an increase in the magnitude and quality of HIV-1-specific CD8 T cells as well as in the levels of IFN-I released, providing a better immunostimulatory activity than the wild-type ISG15GG. Our results confirm the importance of ISG15 as an immune adjuvant in the vaccine field and highlights its role as a potential relevant component in HIV-1 immunization protocols.


Assuntos
HIV-1 , Interferon Tipo I , Humanos , Animais , Camundongos , HIV-1/genética , Vaccinia virus/genética , Adjuvantes Imunológicos , Linfócitos T CD8-Positivos , Imunidade , Ubiquitinas/genética , Citocinas
3.
Microbiol Spectr ; 11(3): e0450822, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37036376

RESUMO

Viruses have developed many different strategies to counteract immune responses, and Vaccinia virus (VACV) is one of a kind in this aspect. To ensure an efficient infection, VACV undergoes a complex morphogenetic process resulting in the production of two types of infective virions: intracellular mature virus (MV) and extracellular enveloped virus (EV), whose spread depends on different dissemination mechanisms. MVs disseminate after cell lysis, whereas EVs are released or propelled in actin tails from living cells. Here, we show that ISG15 participates in the control of VACV dissemination. Infection of Isg15-/- mouse embryonic fibroblasts with VACV International Health Department-J (IHD-J) strain resulted in decreased EV production, concomitant with reduced induction of actin tails and the abolition of comet-shaped plaque formation, compared to Isg15+/+ cells. Transmission electron microscopy revealed the accumulation of intracellular virus particles and a decrease in extracellular virus particles in the absence of interferon-stimulated gene 15 (ISG15), a finding consistent with altered virus egress. Immunoblot and quantitative proteomic analysis of sucrose gradient-purified virions from both genotypes reported differences in protein levels and composition of viral proteins present on virions, suggesting an ISG15-mediated control of viral proteome. Lastly, the generation of a recombinant IHD-J expressing V5-tagged ISG15 (IHD-J-ISG15) allowed us to identify several viral proteins as potential ISG15 targets, highlighting the proteins A34 and A36, which are essential for EV formation. Altogether, our results indicate that ISG15 is an important host factor in the regulation of VACV dissemination. IMPORTANCE Viral infections are a constant battle between the virus and the host. While the host's only goal is victory, the main purpose of the virus is to spread and conquer new territories at the expense of the host's resources. Along millions of years of incessant encounters, poxviruses have developed a unique strategy consisting in the production two specialized "troops": intracellular mature virions (MVs) and extracellular virions (EVs). MVs mediate transmission between hosts, and EVs ensure advance on the battlefield mediating the long-range dissemination. The mechanism by which the virus "decides" to shed from the primary site of infection and its significant impact in viral transmission is not yet fully established. Here, we demonstrate that this process is finely regulated by ISG15/ISGylation, an interferon-induced ubiquitin-like protein with broad antiviral activity. Studying the mechanism that viruses use during infection could result in new ways of understanding our perpetual war against disease and how we might win the next great battle.


Assuntos
Interferons , Vaccinia virus , Animais , Camundongos , Vaccinia virus/genética , Actinas/metabolismo , Proteômica , Fibroblastos/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/genética
4.
Microbiol Spectr ; 10(6): e0389322, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36453897

RESUMO

Interferon-stimulated gene 15 (ISG15) is a 15-kDa ubiquitin-like modifier that binds to target proteins in a process termed ISGylation. ISG15, first described as an antiviral molecule against many viruses, participates in numerous cellular processes, from immune modulation to the regulation of genome stability. Interestingly, the role of ISG15 as a regulator of cell metabolism has recently gained strength. We previously described ISG15 as a regulator of mitochondrial functions in bone marrow-derived macrophages (BMDMs) in the context of Vaccinia virus (VACV) infection. Here, we demonstrate that ISG15 regulates lipid metabolism in BMDMs and that ISG15 is necessary to modulate the impact of VACV infection on lipid metabolism. We show that Isg15-/- BMDMs demonstrate alterations in the levels of several key proteins of lipid metabolism that result in differences in the lipid profile compared with Isg15+/+ (wild-type [WT]) BMDMs. Specifically, Isg15-/- BMDMs present reduced levels of neutral lipids, reflected by decreased lipid droplet number. These alterations are linked to increased levels of lipases and are independent of enhanced fatty acid oxidation (FAO). Moreover, we demonstrate that VACV causes a dysregulation in the proteomes of BMDMs and alterations in the lipid content of these cells, which appear exacerbated in Isg15-/- BMDMs. Such metabolic changes are likely caused by increased expression of the metabolic regulators peroxisome proliferator-activated receptor-γ (PPARγ) and PPARγ coactivator-1α (PGC-1α). In summary, our results highlight that ISG15 controls BMDM lipid metabolism during viral infections, suggesting that ISG15 is an important host factor to restrain VACV impact on cell metabolism. IMPORTANCE The functions of ISG15 are continuously expanding, and growing evidence supports its role as a relevant modulator of cell metabolism. In this work, we highlight how the absence of ISG15 impacts macrophage lipid metabolism in the context of viral infections and how poxviruses modulate metabolism to ensure successful replication. Our results open the door to new advances in the comprehension of macrophage immunometabolism and the interaction between VACV and the host.


Assuntos
Citocinas , Metabolismo dos Lipídeos , Ubiquitinas , Vacínia , Citocinas/metabolismo , Interferons , Lipídeos , PPAR gama/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Vacínia/genética , Vacínia/metabolismo , Vaccinia virus/genética , Animais
5.
Infect Drug Resist ; 14: 4957-4966, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858036

RESUMO

PURPOSE: The aim of the study was to investigate the changing pattern in serogroup distribution and antimicrobial resistance of all Salmonella spp. isolated from patients attending the Mubarak Al Kabeer Hospital (MAK), Kuwait from 2006 to 2020. PATIENTS AND METHODS: A retrospective study of all enrolled patients attending the MAK with culture-positive Salmonella spp. was undertaken. Data on age, gender, culture sample and serogroup were obtained from the laboratory information system. A prospective antimicrobial susceptibility of all stock isolates was carried out using E test. The trend rates of Salmonella serogroups and antimicrobial resistance were compared among 5 periods: 2006-2008, 2009-2011, 2012-2014, 2015-2017, and 2018-2020. RESULTS: A total of 700 isolates were identified. The majority of the isolates were from the stool (77.6%), followed by the blood (16.4%). The most common serogroups were serogroup D (37.6%) and B (23.4%). There was a significant rise in ciprofloxacin resistance from 32.2% during 2006-2008 to 54.3% during 2018-2020 and from 32.5% during 2009-2011 to 54.3% during 2018-2020 (P=0.0001, respectively). The resistance trend to cefotaxime was at relatively low levels ranging from 0% to 3.4% through 2006-2008 to 2018-2020. There was a significant drop of the resistance to ampicillin from 23.6% in 2015-2017 to 12.3% in 2006-2008 to 2018-2020 (P=0.03). Trimethoprim/sulfamethoxazole resistance dropped significantly from 14.5 to 3.6% (P=0.002) during 2006-2008 to 2018-2020 and then from 13.5 to 3.6% (P=0.02) during 2015-2017 to 2018-2020. One hundred and seventeen (16.7%) isolates were multidrug-resistant. CONCLUSION: Continuous surveillance of Salmonella and its antimicrobial resistance is important for antibiotic policy formulation for invasive Salmonella infections.

6.
Viruses ; 10(11)2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30428561

RESUMO

Viruses are responsible for the majority of infectious diseases, from the common cold to HIV/AIDS or hemorrhagic fevers, the latter with devastating effects on the human population. Accordingly, the development of efficient antiviral therapies is a major goal and a challenge for the scientific community, as we are still far from understanding the molecular mechanisms that operate after virus infection. Interferon-stimulated gene 15 (ISG15) plays an important antiviral role during viral infection. ISG15 catalyzes a ubiquitin-like post-translational modification termed ISGylation, involving the conjugation of ISG15 molecules to de novo synthesized viral or cellular proteins, which regulates their stability and function. Numerous biomedically relevant viruses are targets of ISG15, as well as proteins involved in antiviral immunity. Beyond their role as cellular powerhouses, mitochondria are multifunctional organelles that act as signaling hubs in antiviral responses. In this review, we give an overview of the biological consequences of ISGylation for virus infection and host defense. We also compare several published proteomic studies to identify and classify potential mitochondrial ISGylation targets. Finally, based on our recent observations, we discuss the essential functions of mitochondria in the antiviral response and examine the role of ISG15 in the regulation of mitochondrial processes, specifically OXPHOS and mitophagy.


Assuntos
Citocinas/metabolismo , Homeostase , Mitocôndrias/metabolismo , Ubiquitinas/metabolismo , Proteínas Virais/metabolismo , Viroses/imunologia , Humanos , Mitofagia , Fosforilação Oxidativa
7.
PLoS Pathog ; 13(10): e1006651, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29077752

RESUMO

The interferon (IFN)-stimulated gene 15 (ISG15) encodes one of the most abundant proteins induced by interferon, and its expression is associated with antiviral immunity. To identify protein components implicated in IFN and ISG15 signaling, we compared the proteomes of ISG15-/- and ISG15+/+ bone marrow derived macrophages (BMDM) after vaccinia virus (VACV) infection. The results of this analysis revealed that mitochondrial dysfunction and oxidative phosphorylation (OXPHOS) were pathways altered in ISG15-/- BMDM treated with IFN. Mitochondrial respiration, Adenosine triphosphate (ATP) and reactive oxygen species (ROS) production was higher in ISG15+/+ BMDM than in ISG15-/- BMDM following IFN treatment, indicating the involvement of ISG15-dependent mechanisms. An additional consequence of ISG15 depletion was a significant change in macrophage polarization. Although infected ISG15-/- macrophages showed a robust proinflammatory cytokine expression pattern typical of an M1 phenotype, a clear blockade of nitric oxide (NO) production and arginase-1 activation was detected. Accordingly, following IFN treatment, NO release was higher in ISG15+/+ macrophages than in ISG15-/- macrophages concomitant with a decrease in viral titer. Thus, ISG15-/- macrophages were permissive for VACV replication following IFN treatment. In conclusion, our results demonstrate that ISG15 governs the dynamic functionality of mitochondria, specifically, OXPHOS and mitophagy, broadening its physiological role as an antiviral agent.


Assuntos
Citocinas/metabolismo , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Mitofagia , Vaccinia virus/metabolismo , Vacínia/metabolismo , Animais , Arginase/genética , Arginase/metabolismo , Citocinas/genética , Ativação Enzimática/genética , Macrófagos/patologia , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/patologia , Óxido Nítrico/metabolismo , Fosforilação Oxidativa , Ubiquitinas/genética , Ubiquitinas/metabolismo , Vacínia/genética
8.
Med Princ Pract ; 25(5): 472-6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27322647

RESUMO

OBJECTIVE: To evaluate the utility of the Luminex xTAG gastrointestinal pathogen panel (GPP) assay in the detection of enteric pathogens from diarrheal stool samples in Kuwait. MATERIALS AND METHODS: The Luminex xTAG GPP assay was used according to the manufacturer's instructions to evaluate single diarrheal stool samples from 109 hospitalized patients at Mubarak Al-Kabeer Hospital, Kuwait, from March 2014 to June 2015. The assay procedure involved nucleic acid extraction from stool samples, amplification of the target by reverse transcriptase polymerase chain reaction, hybridization of the amplified target by probe, detection of the target by the Luminex instrument and computerized data analysis. Conventional microbiological assays were used as the gold standard for comparison. RESULTS: From the 109 diarrheal stool samples, 20 (18.4%) pathogens were detected by the xTAG GPP assay compared to 10 (9.2%) pathogens using conventional assays. Both methods detected 3 Salmonella spp., 3 Clostridium difficile, 2 rotavirus and 2 norovirus. In addition, the xTAG GPP assay detected 1 Shigella sp., 6 Campylobacter spp., 1 Cryptosporidium sp. and 2 Giardia lamblia which were missed by conventional assays. CONCLUSIONS: In this study, xTAG GPP detected twice as many pathogens as the conventional assays. We recommend the introduction of this assay in routine diagnostic laboratories for a rapid and better diagnosis and treatment of diarrheal disease.


Assuntos
Bioensaio/métodos , Diarreia/microbiologia , Fezes/microbiologia , Humanos , Kuweit
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...