Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Insects ; 14(12)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38132598

RESUMO

The global loss of biodiversity is an urgent concern requiring the implementation of effective monitoring. Flying insects, such as pollinators, are vital for ecosystems, and establishing their population dynamics has become essential in conservation biology. Traditional monitoring methods are labour-intensive and show time constraints. In this work, we explore the use of bioacoustic sensors for monitoring flying insects. Data collected at four Italian farms using traditional monitoring methods, such as hand netting and pan traps, and bioacoustic sensors were compared. The results showed a positive correlation between the average number of buzzes per hour and insect abundance measured by traditional methods, primarily by pan traps. Intraday and long-term analysis performed on buzzes revealed temperature-related patterns of insect activity. Passive acoustic monitoring proved to be effective in estimating flying insect abundance, while further development of the algorithm is required to correctly identify insect taxa. Overall, innovative technologies, such as bioacoustic sensors, do not replace the expertise and data quality provided by professionals, but they offer unprecedented opportunities to ease insect monitoring to support conservation biodiversity efforts.

2.
Sci Adv ; 7(44): eabj1398, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34714677

RESUMO

Social distancing in response to infectious diseases is a strategy exhibited by human and nonhuman animals to counteract the spread of pathogens and/or parasites. Honey bee (Apis mellifera) colonies are ideal models to study this behavior because of the compartmentalized structure of these societies, evolved under exposure to parasite pressure and the need to ensure efficient functioning. Here, by using a combination of spatial and behavioral approaches, we investigated whether the presence of the ectoparasite mite Varroa destructor induces changes in the social organization of A. mellifera colonies that could reduce the spread of the parasite. Our results demonstrated that honey bees react to the intrusion of V. destructor by modifying space use and social interactions to increase the social distancing between young (nurses) and old (foragers) cohorts of bees. These findings strongly suggest a behavioral strategy not previously reported in honey bees to limit the intracolony parasite transmission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA