Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5669, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971836

RESUMO

Reducing water scarcity requires both mitigation of the increasing water pollution and adaptation to the changing availability and demand of water resources under global change. However, state-of-the-art water scarcity modeling efforts often ignore water quality and associated biogeochemical processes in the design of water scarcity reduction measures. Here, we identify cost-effective options for reducing future water scarcity by accounting for water quantity and quality in the highly water stressed and polluted Pearl River Basin in China under various socio-economic and climatic change scenarios based on the Shared Socio-economic Pathways (SSPs) and Representative Concentration Pathways (RCPs). Our modeling approach integrates a nutrient model (MARINA-Nutrients) with a cost-optimization procedure, considering biogeochemistry and human activities on land in a spatially explicit way. Results indicate that future water scarcity is expected to increase by a factor of four in most parts of the Pearl River Basin by 2050 under the RCP8.5-SSP5 scenario. Results also show that water quality management options could half future water scarcity in a cost-effective way. Our analysis could serve as an example of water scarcity assessment for other highly water stressed and polluted river basins around the world and inform the design of cost-effective measures to reduce water scarcity.

2.
PLoS One ; 17(5): e0267439, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35511815

RESUMO

The increasing concern about the degradation of water-dependent ecosystems calls for considering ecosystems benefits in water management decision-making. Sustainable water management requires adequate economic and biophysical information on water systems supporting both human activities and natural ecosystems. This information is essential for assessing the impact on social welfare of water allocation options. This paper evaluates various alternative water management policies by including the spatial and sectoral interrelationships between the economic and environmental uses of water. A hydroeconomic model is developed to analyze water management policies for adaptation to reduced water availability in the Ebro Basin of Spain. The originality in our contribution is the integration of environmental benefits across the basin, by using endemic biophysical information that relates stream flows and ecosystem status in the Ebro Basin. The results show the enhancement of social welfare that can be achieved by protecting environmental flows, and the tradeoffs between economic and environmental benefits under alternative adaptation strategies. The introduction of water markets is a policy that maximizes the private benefits of economic activities, but disregards environmental benefits. The results show that the current institutional policy where stakeholders cooperate inside the water authority, provides lower private benefits but higher environmental benefits compared to those obtained under water markets, especially under severe droughts. However, the water authority is not allocating enough environmental flows to optimize social welfare. This study informs strategies for protection of environmental flows in the Ebro Basin, which is a compelling decision under the imminent climate change impacts on water availability in coming decades.


Assuntos
Ecossistema , Água , Mudança Climática , Conservação dos Recursos Naturais/métodos , Humanos , Rios , Abastecimento de Água
3.
Sci Total Environ ; 835: 155518, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35483468

RESUMO

Climate water stress internationally challenges the goal of achieving food, energy, and water security. This challenge is elevated by population and income growth. Increased climate water stress levels reduce water supplies in many river basins and elevate competition for water among sectors. Organized information is needed to guide river basin managers and stakeholders who must plan for a changing climate through innovative water allocation policies, trade-off analysis, vulnerability assessment, capacity adaptation, and infrastructure planning. Several hydroeconomic models have been developed and applied assessing water use in different sectors, counties, cultures, and time periods. However, none to date has presented an optimization framework by which historical water use and economic benefit patterns can be replicated while presenting capacity to adapt to future climate water stresses to inform the design of policies not yet been implemented. This paper's unique contribution is to address this gap by designing and presenting results of a hydroeconomic model for which optimized base conditions exactly match observed data water use and economic welfare for several urban and agricultural uses at several locations in a large European river basin for which water use supports a population of more than 3.2 million. We develop a state-of-the arts empirical dynamic hydroeconomic optimization model to discover land and water use patterns that optimize sustained farm and city income under various levels of climate-water stress. Findings using innovative model calibration methods allow for the discovery of efficient water allocation plans as well as providing insight into marginal behavioral responses to climate water stress and water policies. Results identify that water trade policy under climate water stress provides more economically efficient water use patterns, reallocating water from lower valued uses to higher valued uses such as urban water. The Ebro River Basin in Spain is used as an example to investigate water use adaptation patterns under various levels of climate water stress. That basin's issues and challenges can be of relevance to other river basins internationally.


Assuntos
Desidratação , Abastecimento de Água , Agricultura , Mudança Climática , Humanos , Rios
4.
Sci Total Environ ; 786: 147415, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-33984701

RESUMO

Depletion of groundwater aquifers along with all of the associated quality and quantity problems which affect profitability of direct agricultural and urban users and linked groundwater-ecosystems have been recognized globally. During recent years, attention has been devoted to land subsidence-the loss of land elevation that occurs in areas with certain geological characteristics associated with aquifer exploitation. Despite the large socioeconomic impacts of land subsidence most of these effects are still not well analyzed and not properly recognized and quantified globally. In this paper we developed a land subsidence impact extent (LSIE) index that is based on 10 land subsidence attributes, and applied it to 113 sites located around the world with reported land subsidence effects. We used statistical means to map physical, human, and policy variables to the regions affected by land subsidence and quantified their impact on the index. Our main findings suggest that LSIE increases between 0.1 and 6.5% by changes in natural processes, regulatory policy interventions, and groundwater usage, while holding all other variables unchanged. Effectiveness of regulatory policy interventions varies depending on the lithology of the aquifer system, in particular its stiffness. Our findings suggest also that developing countries are more prone to land subsidence due to lower performance of their existing water governance and institutions.

5.
Artigo em Inglês | MEDLINE | ID: mdl-33530500

RESUMO

Climate change represents a serious threat to life in earth. Agriculture releases significant emissions of greenhouse gases (GHG), but also offers low-cost opportunities to mitigate GHG emissions. This paper assesses agricultural GHG emissions in Aragon, one important and representative region for agriculture in Spain. The Marginal Abatement Cost Curve (MACC) approach is used to analyze the abatement potential and cost-efficiency of mitigation measures under several scenarios, with and without taking into account the interaction among measures and their transaction costs. The assessment identifies the environmental and economic outcomes of different combinations of measures, including crop, livestock and forest measures. Some of these measures are win-win, with pollution abatement at negative costs to farmers. Moreover, we develop future mitigation scenarios for agriculture toward the year 2050. Results highlight the trade-offs and synergies between the economic and environmental outcomes of mitigation measures. The biophysical processes underlying mitigation efforts are assessed taking into account the significant effects of interactions between measures. Interactions reduce the abatement potential and worsen the cost-efficiency of measures. The inclusion of transaction costs provides a better ranking of measures and a more accurate estimation of implementation costs. The scenario analysis shows how the combinations of measures could reduce emissions by up to 75% and promote sustainable agriculture in the future.


Assuntos
Gases de Efeito Estufa , Agricultura , Animais , Análise Custo-Benefício , Efeito Estufa , Espanha
6.
Sci Total Environ ; 592: 495-502, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28325593

RESUMO

Agriculture and forestry activities are one of the many sources of greenhouse gas (GHG) emissions, but they are also sources of low-cost opportunities to mitigate these emissions compared to other economic sectors. This paper provides a first estimate of the potential for mitigation in the whole Spanish agriculture. A set of mitigation measures are selected for their cost-effectiveness and abatement potential and an efficient mix of these measures is identified with reference to a social cost of carbon of 40 €/tCO2e. This mix of measures includes adjusting crop fertilization and managing forests for carbon sequestration. Results indicate that by using the efficient mix of mitigation measures the annual abatement potential could reach 10 million tCO2e, which represents 28% of current agricultural emissions in Spain. This potential could further increase if the social cost of carbon rises covering the costs of applying manure to crops. Results indicate also that economic instruments such as input and emission taxes could be only ancillary measures to address mitigation in agriculture. These findings can be used to support the mitigation efforts in Spain and guide policymakers in the design of country-level mitigation strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...