Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 10(11)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34829020

RESUMO

The high perishability of fresh meat results in short sales and consumption periods, which can lead to high amounts of food waste, especially when a fixed best-before date is stated. Thus, the aim of this study was the development of a real-time dynamic shelf-life criterion (DSLC) for fresh pork filets based on a multi-model approach combining predictive microbiology and sensory modeling. Therefore, 647 samples of ma-packed pork loin were investigated in isothermal and non-isothermal storage trials. For the identification of the most suitable spoilage predictors, typical meat quality parameters (pH-value, color, texture, and sensory characteristics) as well as microbial contamination (total viable count, Pseudomonas spp., lactic acid bacteria, Brochothrix thermosphacta, Enterobacteriaceae) were analyzed at specific investigation points. Dynamic modeling was conducted using a combination of the modified Gompertz model (microbial data) or a linear approach (sensory data) and the Arrhenius model. Based on these models, a four-point scale grading system for the DSLC was developed to predict the product status and shelf-life as a function of temperature data in the supply chain. The applicability of the DSLC was validated in a pilot study under real chain conditions and showed an accurate real-time prediction of the product status.

2.
J Packag Technol Res ; 4(1): 23-32, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32685915

RESUMO

Based on the well-investigated OnVu™ TTI kinetics, models were developed to adjust the label to different food products and predict the discolouration process under dynamic temperature conditions. After the successful validation under laboratory conditions, the applicability of the time temperature indicator (TTI) as shelf life indicator was tested in a national poultry chain. The TTI accurately reflected the temperature fluctuations occurring under real chain conditions. Shelf life predictions based on the discolouration of the TTIs were in accordance with the microbial shelf life of the product. The models were integrated in an online software tool to check for the compliance of the cold chain and predict the remaining shelf life of the product. The implementation of TTI and the software result in a valuable tool to support the decision-making process in the cold chain. The application of flexible shelf life enables the reduction of food waste in the meat supply chain.

3.
Poult Sci ; 96(8): 2853-2861, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28419366

RESUMO

The aim of this study was to investigate the influence of different methionine sources and concentrations on the quality and spoilage process of broiler meat. The trial was comprised of 7 treatment groups: one basal group (suboptimal in Methionine+Cysteine; i.e., 0.89, 0.74, 0.69% in DM SID Met+Cys in starter, grower, and finisher diets, respectively) and 3 doses (0.10, 0.25, and 0.40%) of either DL-Methionine (DLM) or DL-2-hydroxy-4-methylthio butanoic acid (DL-HMTBA) on an equimolar basis of the DLM-supplemented groups. The broilers were fed the diets for 35 d, then slaughtered and processed. The filets were aerobically packed and stored under temperature controlled conditions at 4°C. Meat quality investigations were comprised of microbial investigations (total viable count and Pseudomonas spp.), pH and drip loss measurements of the filets. The shelf life of the meat samples was determined based on sensory parameters. After slaughtering, all supplemented meat samples showed a high quality, whereby no differences between the 2 methionine sources could be detected for the microbial load, pH, and drip loss. In comparison to the control group, the supplemented samples showed a higher sensory quality, characterized by a fresh smell and fresh red color. Methionine supplementation had a significant influence on meat quality parameters during storage. The microbial load, pH and drip loss of the chicken filets were positively correlated to the methionine concentration. Additionally, the microbial load at the end of storage was positively correlated to pH and drip loss values. Nevertheless, the microbial parameters were in a normal range and the positive correlation to methionine concentration did not affect the sensory shelf life. The mean sensory shelf life of the broiler filets varied between 7 to 9 d. During storage, no difference in the development of sensory parameters was observed between the supplemented groups, while the spoilage process of the basal group occurred slightly faster. In conclusion, methionine concentration, but not methionine source, effected meat quality parameters in breast muscles of broilers.


Assuntos
Qualidade dos Alimentos , Armazenamento de Alimentos , Carne/análise , Metionina/análogos & derivados , Metionina/metabolismo , Ração Animal/análise , Animais , Galinhas , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Metionina/administração & dosagem , Racemetionina/administração & dosagem , Racemetionina/metabolismo
4.
Poult Sci ; 94(3): 424-32, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25638474

RESUMO

Storage tests under different temperatures (2, 4, 10, and 15°C) were conducted to identify the best predictor variable that is most effective to explain the loss of the shelf life and quality of modified atmosphere packed (MAP) poultry, and constitutes the basis for the prediction of the remaining shelf life. The samples were packed in 70% O2 and 30% CO2, which is the common used gas atmosphere for poultry filets in Germany. Typical spoilage microorganisms (Pseudomonas spp., Brochothrix thermosphacta, Enterobacteriaceae, and Lactobacillus spp.) and total viable count (TVC) were enumerated frequently. Additionally, samples were analyzed for sensory changes, pH, and gas concentration. The data extraction and selections by stepwise regression and principle component analysis (PCA) was carried out to identify a variable which has the main influence on shelf life and freshness loss. The results accentuate that the spoilage is caused by a wide range of microorganisms. No specific microorganism could be identified as the dominant originator for the deteriorative changes. Solely TVC showed significant correlations between the development of the sensory decay and the development of the TVC for each single storage temperature.


Assuntos
Bactérias/crescimento & desenvolvimento , Microbiologia de Alimentos , Armazenamento de Alimentos/métodos , Carne/análise , Carne/microbiologia , Animais , Bactérias/isolamento & purificação , Galinhas , Contagem de Colônia Microbiana/veterinária , Alemanha , Análise de Componente Principal , Análise de Regressão , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...