Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 106(5): 055001, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21405402

RESUMO

In gyrokinetic theory, the quadratic nonlinearity is known to play an important role in the dynamics by redistributing (in a conservative fashion) the free energy between the various active scales. In the present study, the free energy transfer is analyzed for the case of ion temperature gradient driven turbulence. It is shown that it shares many properties with the energy transfer in fluid turbulence. In particular, one finds a (strongly) local, forward (from large to small scales) cascade of free energy in the plane perpendicular to the background magnetic field. These findings shed light on some fundamental properties of plasma turbulence, and encourage the development of large-eddy-simulation techniques for gyrokinetics.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(4 Pt 2): 046407, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17155182

RESUMO

Particle simulations on a flat-topped somewhat underdense (typically n0/nc = 0.6) plasma slab by Nikolic [Phys. Rev. E 66, 036404 (2002)] were seen to give transient stimulated scattering behavior with frequency shift [omega0 - omegas(approximately omegap)] considerably less than the plasma frequency omegap. This has been linked to the electron acoustic wave (EAW) and the scattering was thus seen as another example of stimulated electron acoustic scattering inferred by Montgomery [Phys. Rev. Lett. 87, 155001 (2001)] from experiments on low-density plasmas. Montgomery had noted the difficulty of how one could have a very narrow observed scattering from a wave whose damping was at least initially very high. Our Vlasov-Maxwell simulations for such somewhat underdense (n0/nc > or = 0.25) plasmas show that the simulation resonance was in fact determined by the beating of the pump with a new "radiating pseudocavity" electromagnetic mode for the slab at a frequency close to omegap with relatively low loss. This allows the initial narrow-band excitation of the kinetic electrostatic electron nonlinear (KEEN) waves (the nonlinear "cousins" of EAWs) at a well-defined frequency (omegaK approximately omega0 - omegap < omegap) which is not necessarily the value given by the EAW dispersion relation. (The KEEN wave characteristics have been discussed by Afeyan [33rd AAAC (2003), #238, IFSA 2003].) The consideration of such a mechanism is relevant to moderately underdense hot plasmas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...