Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35886869

RESUMO

Oral candidiasis has a high rate of development, especially in immunocompromised patients. Immunosuppressive and cytotoxic therapies in hospitalized HIV and cancer patients are known to induce the poor management of adverse reactions, where local and systemic candidiasis become highly resistant to conventional antifungal therapy. The development of oral candidiasis is triggered by several mechanisms that determine oral epithelium imbalances, resulting in poor local defense and a delayed immune system response. As a result, pathogenic fungi colonies disseminate and form resistant biofilms, promoting serious challenges in initiating a proper therapeutic protocol. Hence, this study of the literature aimed to discuss possibilities and new trends through antifungal therapy for buccal drug administration. A large number of studies explored the antifungal activity of new agents or synergic components that may enhance the effect of classic drugs. It was of significant interest to find connections between smart biomaterials and their activity, to find molecular responses and mechanisms that can conquer the multidrug resistance of fungi strains, and to transpose them into a molecular map. Overall, attention is focused on the nanocolloids domain, nanoparticles, nanocomposite synthesis, and the design of polymeric platforms to satisfy sustained antifungal activity and high biocompatibility with the oral mucosa.


Assuntos
Candidíase Bucal , Candidíase , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Biofilmes , Candidíase/tratamento farmacológico , Candidíase Bucal/tratamento farmacológico , Candidíase Bucal/microbiologia , Fungos , Humanos
2.
Pharmaceutics ; 15(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36678705

RESUMO

The treatment of wounds occurring accidentally or as a result of chronic diseases most frequently requires the use of appropriate dressings, mainly to ensure tissue regeneration/healing, at the same time as treating or preventing potential bacterial infections or superinfections. Collagen type I-based scaffolds in tandem with adequate antimicrobials can successfully fulfill these requirements. In this work, starting from the corresponding hydrogels, we prepared a series of freeze-dried atelocollagen type I-based matrices loaded with tannic acid (TA) and chlorhexidine digluconate (CHDG) as active agents with a broad spectrum of antimicrobial activity and also as crosslinkers for the collagen network. The primary aim of this study was to design an original and reliable algorithm to in vitro monitor and kinetically analyze the simultaneous release of TA and CHDG from the porous matrices into an aqueous solution of phosphate-buffered saline (PBS, pH 7.4, 37 °C) containing micellar carriers of a cationic surfactant (hexadecyltrimethylammonium bromide, HTAB) as a release environment that roughly mimics human extracellular fluids in living tissues. Around this central idea, a comprehensive investigation of the lyophilized matrices (morpho-structural characterization through FT-IR spectroscopy, scanning electron microscopy, swelling behavior, resistance against the collagenolytic action of collagenase type I) was carried out. The kinetic treatment of the release data displayed a preponderance of non-Fickian-Case II diffusion behavior, which led to a general anomalous transport mechanism for both TA and CHDG, irrespective of their concentrations. This is equivalent to saying that the release regime is not governed only by the gradient concentration of the releasing components inside and outside the matrix (like in ideal Fickian diffusion), but also, to a large extent, by the relaxation phenomena of the collagen network (determined, in turn, by its crosslinking degree induced by TA and CHDG) and the dynamic capacity of the HTAB micelles to solubilize the two antimicrobials. By controlling the degree of physical crosslinking of collagen with a proper content of TA and CHDG loaded in the matrix, a tunable, sustainable release profile can be obtained.

3.
Pharmaceuticals (Basel) ; 14(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34959615

RESUMO

Presently, notwithstanding the progress regarding wound-healing management, the treatment of the majority of skin lesions still represents a serious challenge for biomedical and pharmaceutical industries. Thus, the attention of the researchers has turned to the development of novel materials based on cellulose derivatives. Cellulose derivatives are semi-synthetic biopolymers, which exhibit high solubility in water and represent an advantageous alternative to water-insoluble cellulose. These biopolymers possess excellent properties, such as biocompatibility, biodegradability, sustainability, non-toxicity, non-immunogenicity, thermo-gelling behavior, mechanical strength, abundance, low costs, antibacterial effect, and high hydrophilicity. They have an efficient ability to absorb and retain a large quantity of wound exudates in the interstitial sites of their networks and can maintain optimal local moisture. Cellulose derivatives also represent a proper scaffold to incorporate various bioactive agents with beneficial therapeutic effects on skin tissue restoration. Due to these suitable and versatile characteristics, cellulose derivatives are attractive and captivating materials for wound-healing applications. This review presents an extensive overview of recent research regarding promising cellulose derivatives-based materials for the development of multiple biomedical and pharmaceutical applications, such as wound dressings, drug delivery devices, and tissue engineering.

4.
Materials (Basel) ; 14(5)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33804421

RESUMO

Microbial infections associated with skin diseases are frequently investigated since they impact on the progress of pathology and healing. The present work proposes the development of freeze-dried, glutaraldehyde cross-linked, and non-cross-linked biocomposite dressings with a porous structure, which may assist the reepithelization process through the presence of collagen and carboxymethylcellulose, along with a therapeutic antimicrobial effect, due to silver nanoparticles (AgNPs) addition. Phisyco-chemical characterization revealed the porous morphology of the obtained freeze-dried composites, the presence of high crystalline silver nanoparticles with truncated triangular and polyhedral morphologies, as well as the characteristic absorption bands of collagen, silver, and carboxymethylcellulose. In vitro tests also assessed the stability, functionality, and the degradability rate of the obtained wound-dressings. Antimicrobial assay performed on Gram-negative (Escherichia coli), Gram-positive (Staphyloccocus aureus) bacteria, and yeast (Candida albicans) models demonstrated that composite wound dressings based on collagen, carboxymethylcellulose, and AgNPs are suitable for skin lesions because they prevent the risk of infection and have prospective wound healing capacity. Moreover, the cell toxicity studies proved that the obtained materials can be used in long time treatments, with no cytotoxic effects.

5.
Polymers (Basel) ; 12(9)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854342

RESUMO

We report in this paper the synthesis and characterization of a new collagen-based material. This material was obtained in a spongy form and was functionalized with an antibiotic, ciprofloxacin. The targeted applications of these kind of materials concern the post-operative prophylaxis. The in vitro tests (antimicrobial, cytotoxic, drug release) showed that sponges with a concentration of 0.75 g of ciprofloxacin per gram of collagen could be beneficial for the desired applications.

6.
J Cell Mol Med ; 24(17): 9692-9704, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32666712

RESUMO

The development of stem cell technology in combination with advances in biomaterials has opened new ways of producing engineered tissue substitutes. In this study, we investigated whether the therapeutic potential of an acellular porous scaffold made of type I collagen can be improved by the addition of a powerful trophic agent in the form of mesenchymal stromal cells conditioned medium (MSC-CM) in order to be used as an acellular scaffold for skin wound healing treatment. Our experiments showed that MSC-CM sustained the adherence of keratinocytes and fibroblasts as well as the proliferation of keratinocytes. Moreover, MSC-CM had chemoattractant properties for keratinocytes and endothelial cells, attributable to the content of trophic and pro-angiogenic factors. Also, for the dermal fibroblasts cultured on collagen scaffold in the presence of MSC-CM versus serum control, the ratio between collagen III and I mRNAs increased by 2-fold. Furthermore, the gene expression for α-smooth muscle actin, tissue inhibitor of metalloproteinase-1 and 2 and matrix metalloproteinase-14 was significantly increased by approximately 2-fold. In conclusion, factors existing in MSC-CM improve the colonization of collagen 3D scaffolds, by sustaining the adherence and proliferation of keratinocytes and by inducing a pro-healing phenotype in fibroblasts.


Assuntos
Colágeno/metabolismo , Células HaCaT/metabolismo , Células-Tronco Mesenquimais/metabolismo , Pele/metabolismo , Técnicas de Cultura de Células/métodos , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Humanos , Engenharia Tecidual/métodos , Alicerces Teciduais , Cicatrização/fisiologia
7.
Molecules ; 25(10)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455788

RESUMO

Myrtus communis L. is one of the important aromatic and medicinal species from the Mediterranean area. It is used in various fields such as culinary, cosmetic, pharmaceutical, therapeutic, and industrial applications. Thus, a Box-Wilson experimental plan was used in this study to select the optimal operating conditions in order to obtain high volumes of essential oils. The factorial design method was applied to evaluate at an industrial scale the effect of major process variables on the essential oil extraction from Myrtus communis L. herbs by the steam distillation method. The input variables considered as significant operating conditions were: X1-boiler occupancy rate (boilers were filled to 50%, 75%, and 100%), X2-distillation duration (distillation was continued 60, 75, and 90 min), and X3-particle size (herbs were cut in sizes of 10, 20, and 30 mm via guillotine). The dependent variable selected, coded as Y, was the essential oil volume obtained (mL). The steps of the classical statistical experimental design technique were complemented with the Taguchi method to improve the extraction efficacy of essential oil from Myrtus communis L., and the optimum parameter conditions were selected: boiler occupancy rate 100%, distillation duration 75 min, and particle size 20 mm. Following the optimum parameters, the GC-MS assay revealed for the Myrtus communis L. essential oil two predominant components, α-pinene-33.14% and eucalyptol-55.09%.


Assuntos
Monoterpenos Bicíclicos/química , Eucaliptol/química , Myrtus/química , Óleos Voláteis/química , Monoterpenos Bicíclicos/isolamento & purificação , Destilação/métodos , Eucaliptol/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Óleos Voláteis/isolamento & purificação , Vapor
8.
Pharmaceutics ; 10(4)2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30423969

RESUMO

The aim of this study is to design, develop and evaluate new biohybrid sponges based on polymers (collagen and polyvinyl alcohol) with and without indomethacin as anti-inflammatory drug model to be used for tissue regeneration in wound healing. Type I fibrillar collagen in the form of a gel and different concentrations of polyvinyl alcohol were mixed together to prepare composite gels. Both control samples, without indomethacin and with indomethacin, were obtained. All samples were crosslinked with glutaraldehyde. By freeze-drying of hydrogels, the spongious forms (matrices) were obtained. The matrices were characterized by FT-IR spectroscopy, scanning electron microscopy (SEM), water absorption, enzymatic degradation and in vitro indomethacin release. The pharmacological effect of the spongious biohybrid matrices was determined on an experimental model of burns induced to Wistar rats. The SEM images showed a porous structure with interconnected pores. Collagen sponges present a structure with pore sizes between 20 and 200 µm, which became more and more compact with polyvinyl alcohol addition. The FT-IR showed interactions between collagen and polyvinyl alcohol. The enzymatic degradation indicated that the most stable matrix is the one with the ratio 75:25 of collagen:polyvinyl alcohol (ACI75), the other ones being degradable in time. The kinetic data of indomethacin release from matrices were fitted with different kinetic models and highlighted a biphasic release of the drug. Such kinetic profiles are targeted in skin wound healing for which important aspects are impaired inflammation and local pain. The treatment with sponges associated with anti-inflammatory drug had beneficial effects on the healing process in experimentally induced burns compared to the corresponding matrices without indomethacin and the classical treated control group.

9.
Molecules ; 22(9)2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28914807

RESUMO

The aim of this study was the development and optimization of some topical collagen-dextran sponges with flufenamic acid, designed to be potential dressings for burn wounds healing. The sponges were obtained by lyophilization of hydrogels based on type I fibrillar collagen gel extracted from calf hide, dextran and flufenamic acid, crosslinked and un-crosslinked, and designed according to a 3-factor, 3-level Box-Behnken experimental design. The sponges showed good fluid uptake ability quantified by a high swelling ratio. The flufenamic acid release profiles from sponges presented two stages-burst effect resulting in a rapid inflammation reduction, and gradual delivery ensuring the anti-inflammatory effect over a longer burn healing period. The resistance to enzymatic degradation was monitored through a weight loss parameter. The optimization of the sponge formulations was performed based on an experimental design technique combined with response surface methodology, followed by the Taguchi approach to select those formulations that are the least affected by the noise factors. The treatment of experimentally induced burns on animals with selected sponges accelerated the wound healing process and promoted a faster regeneration of the affected epithelial tissues compared to the control group. The results generated by the complex sponge characterization indicate that these formulations could be successfully used for burn dressing applications.


Assuntos
Bandagens , Queimaduras/tratamento farmacológico , Colágeno/química , Dextranos/química , Ácido Flufenâmico/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Reagentes de Ligações Cruzadas/química , Composição de Medicamentos , Liberação Controlada de Fármacos , Ácido Flufenâmico/química , Hidrogéis , Concentração de Íons de Hidrogênio , Cinética , Masculino , Modelos Químicos , Ratos Wistar , Regeneração , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...