RESUMO
The concept of sustainability has gained prominence in recent years, enhancing the need to develop products that are less harmful to the environment. Dyes are used by various industrial sectors and have a lot of market value; they are used on a large scale mainly by the textile industry that uses large volumes of water and is one of the main contributors to the contamination of water bodies. Some natural compounds, especially anthraquinones are re-emerging as possible alternatives to synthetic dyes, some of which are known for their toxic and/or mutagenic effects. The BioColour project (https://biocolour.fi/) which is interested in promoting the development of new alternative molecules to synthetic dyes, provided us highly purified anthraquinone dyes dermocybin and dermorubin (>98% purity) extracted from a specie of fungus Cortinarius sanguineus. Dyes were tested for their acute and chronic toxicity using different aquatic organisms. Dermorubin was not toxic to any of the organisms tested for the highest test concentration of 1 mg L-1 and it was the most promising dye. Dermocybin was toxic to Daphnia similis (EC50 = 0.51 mg L-1), Ceriodaphnia dubia (IC10 = 0.13 mg L-1) and Danio rerio embryos (extrapolated LC50 = 2.44 mg L-1). A safety limit, i.e, predicted no-effect concentration (PNEC) of 0.0026 mg L-1 was derived based on the toxicity of dermocybin. The PNEC value can be used to provide hazard information for future application in commercial dyeing processes. Then, we compared the toxicity of dermocybin and dermorubin with ecotoxicity data available in the literature on other anthraquinone dyes of natural and synthetic origin. Some natural dyes can be as toxic as synthetic ones, or more toxic when chronic effects are considered. Despite natural dyes being used since centuries past, there are few ecotoxicological studies available. This study is designed to help develop a more comprehensive understanding of their toxicological properties.
Assuntos
Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Daphnia , Peixe-Zebra , Corantes/toxicidade , Antraquinonas/toxicidade , ÁguaRESUMO
Water quality criteria to protect aquatic life are not available for most disperse dyes which are often used as commercial mixtures in textile coloration. In this study, the acute and chronic toxicity of the commercial dye Disperse Red 1 (DR1) to eight aquatic organisms from four trophic levels was evaluated. A safety threshold, i.e. Predicted No-Effect Concentration (PNEC), was derived based on the toxicity information of the commercial product and the purified dye. This approach was possible because the toxicity of DR1 was accounting for most of the toxicity of the commercial mixture. A long-term PNEC of 60 ng L(-1) was proposed, based on the most sensitive chronic endpoint for Daphnia similis. A short-term PNEC of 1800 ng L(-1) was proposed based on the most sensitive acute endpoint also for Daphnia similis. Both key studies have been evaluated with the new "Criteria for Reporting and Evaluating ecotoxicity Data" (CRED) methodology, applying more objective criteria to assess the quality of toxicity tests, resulting in two reliable and relevant endpoints with only minor restrictions. HPLC-MS/MS was used to quantify the occurrence of DR1 in river waters of three sites, influenced by textile industry discharges, resulting in a concentration range of 50-500 ng L(-1). The risk quotients for DR1 obtained in this work suggest that this dye can pose a potential risk to freshwater biota. To reduce uncertainty of the derived PNEC, a fish partial or full lifecycle study should be performed.