Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 7: e7543, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31565556

RESUMO

Global loss of biodiversity is an ongoing process that concerns both local and global authorities. Studies of biodiversity mainly involve traditional methods using morphological characters and molecular protocols. However, conventional methods are a time consuming and resource demanding task. The development of high-throughput sequencing (HTS) techniques has reshaped the way we explore biodiversity and opened a path to new questions and novel empirical approaches. With the emergence of HTS, sequencing the complete mitochondrial genome became more accessible, and the number of genome sequences published has increased exponentially during the last decades. Despite the current state of knowledge about the potential of mitogenomics in phylogenetics, this is still a relatively under-explored area for a multitude of taxonomic groups, especially for those without commercial relevance, non-models organisms and with preserved DNA. Here we take the first step to assemble and annotate the genomes from HTS data using a new protocol of genome skimming which will offer an opportunity to extend the field of mitogenomics to under-studied organisms. We extracted genomic DNA from specimens preserved in ethanol. We used Nextera XT DNA to prepare indexed paired-end libraries since it is a powerful tool for working with diverse samples, requiring a low amount of input DNA. We sequenced the samples in two different Illumina platform (MiSeq or NextSeq 550). We trimmed raw reads, filtered and had their quality tested accordingly. We performed the assembly using a baiting and iterative mapping strategy, and the annotated the putative mitochondrion through a semi-automatic procedure. We applied the contiguity index to access the completeness of each new mitogenome. Our results reveal the efficiency of the proposed method to recover the whole mitogenomes of preserved DNA from non-model organisms even if there are gene rearrangement in the specimens. Our findings suggest the potential of combining the adequate platform and library to the genome skimming as an innovative approach, which opens a new range of possibilities of its use to obtain molecular data from organisms with different levels of preservation.

2.
Mol Biol Evol ; 34(9): 2258-2270, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28505375

RESUMO

Amoebozoa is the eukaryotic supergroup sister to Obazoa, the lineage that contains the animals and Fungi, as well as their protistan relatives, and the breviate and apusomonad flagellates. Amoebozoa is extraordinarily diverse, encompassing important model organisms and significant pathogens. Although amoebozoans are integral to global nutrient cycles and present in nearly all environments, they remain vastly understudied. We present a robust phylogeny of Amoebozoa based on broad representative set of taxa in a phylogenomic framework (325 genes). By sampling 61 taxa using culture-based and single-cell transcriptomics, our analyses show two major clades of Amoebozoa, Discosea, and Tevosa. This phylogeny refutes previous studies in major respects. Our results support the hypothesis that the last common ancestor of Amoebozoa was sexual and flagellated, it also may have had the ability to disperse propagules from a sporocarp-type fruiting body. Overall, the main macroevolutionary patterns in Amoebozoa appear to result from the parallel losses of homologous characters of a multiphase life cycle that included flagella, sex, and sporocarps rather than independent acquisition of convergent features.


Assuntos
Amoeba/genética , Amebozoários/genética , Amoeba/metabolismo , Animais , Evolução Biológica , Eucariotos/genética , Evolução Molecular , Fungos/genética , Biblioteca Gênica , Invertebrados/genética , Filogenia , Análise de Sequência de DNA/métodos
3.
Eur J Protistol ; 58: 175-186, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28222945

RESUMO

Molecular phylogeny is an indispensable tool for assessing evolutionary relationships among protists. The most commonly used marker is the small subunit ribosomal RNA gene, a conserved gene present in many copies in the nuclear genomes. However, this marker is not variable enough at a fine-level taxonomic scale, and intra-genomic polymorphism has already been reported. Finding a marker that could be useful at both deep and fine taxonomic resolution levels seemed like a utopic dream. We designed Amoebozoa-specific primers to amplify a region including partial sequences of two subunits of the mitochondrial nicotinamide adenine dinucleotide dehydrogenase gene (NAD9/NAD7). We applied them to arcellinids belonging to distantly related genera (Arcella, Difflugia, Netzelia and Hyalosphenia) and to Arcellinid-rich environmental samples to obtain additional Amoebozoa sequences. Tree topology was congruent with previous phylogenies, all nodes being highly supported, suggesting that this marker is well-suited for deep phylogenies in Arcellinida and perhaps Amoebozoa. Furthermore, it enabled discrimination of close-related taxa. This short genetic marker (ca. 250bp) can therefore be used at different taxonomic levels, due to a fast-varying intergenic region presenting either a small intergenic sequence or an overlap, depending on the species.


Assuntos
Amebozoários/classificação , Amebozoários/genética , Código de Barras de DNA Taxonômico/normas , NADH Desidrogenase/genética , Filogenia , Amebozoários/enzimologia , Genes de Protozoários/genética , Marcadores Genéticos/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...