Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; : e0057324, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016593

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has triggered a serious global health crisis, resulting in millions of reported deaths since its initial identification in China in November 2019. The global disparities in immunization access emphasize the urgent need for ongoing research into therapeutic interventions. This study focuses on the potential use of molecular dihydrogen (H2) inhalation as an adjunctive treatment for COVID-19. H2 therapy shows promise in inhibiting intracellular signaling pathways associated with inflammation, particularly when administered early in conjunction with nasal oxygen therapy. This phase I study, characterized by an open-label, prospective, monocentric, and single ascending-dose design, seeks to assess the safety and tolerability of the procedure in individuals with confirmed SARS-CoV-2 infection. Employing a 3 + 3 design, the study includes three exposure durations (target durations): 1 day (D1), 3 days (D2), and 6 days (D3). We concluded that the maximum tolerated duration is at least 3 days. Every patient showed clinical improvement and excellent tolerance to H2 therapy. To the best of our knowledge, this phase I clinical trial is the first to establish the safety of inhaling a mixture of H2 (3.6%) and N2 (96.4%) in hospitalized COVID-19 patients. The original device and method employed ensure the absence of explosion risk. The encouraging outcomes observed in the 12 patients included in the study justify further exploration through larger, controlled clinical trials. CLINICAL TRIALS: This study is registered with ClinicalTrials.gov as NCT04633980.

2.
Colloids Surf B Biointerfaces ; 190: 110924, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32146278

RESUMO

Quartz crystal microbalance studies have been carried out to monitor the fusion of lipid vesicles (pure 1,2-dimyristoyl-sn-glycero-3-phosphocholine, DMPC) and mixed vesicles (DMPC and 4-decylaniline). In order to increase the stability of the lipid deposits onto the electrodes, we have developed an original approach involving electrografting of adsorbed mixed vesicles. Aryldiazonium salts generated in situ from 4-decylaniline (4DA) present in adsorbed and fused mixed vesicles at the electrode surface allow their cathodic reduction and subsequent grafting. The stability of the supported lipid deposit has been shown to significantly increase from less than one day for pure DMPC to about two weeks with the lipid deposition assisted by electrochemical grafting. In this stable lipid deposit, the insertion of the sodium/proton antiporter membrane protein (NhaA) or its inactive mutant has been carried out by fusion of proteoliposomes. This has been followed by characterization of the inserted protein activity by cyclic voltammetry onto an electrode previously modified by an adsorbed pH sensor (2-anthraquinone sulfonate). Activation of the protein function by sodium ions leads to a shift of the interfacial pH and confirms the integrity of the immobilized NhaA.


Assuntos
Materiais Biomiméticos/química , Dimiristoilfosfatidilcolina/química , Técnicas Eletroquímicas , Proteínas de Escherichia coli/química , Lipídeos/química , Trocadores de Sódio-Hidrogênio/química , Oxirredução , Tamanho da Partícula , Propriedades de Superfície
3.
Sci Rep ; 3: 1516, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23519113

RESUMO

We describe the first implanted glucose biofuel cell (GBFC) that is capable of generating sufficient power from a mammal's body fluids to act as the sole power source for electronic devices. This GBFC is based on carbon nanotube/enzyme electrodes, which utilize glucose oxidase for glucose oxidation and laccase for dioxygen reduction. The GBFC, implanted in the abdominal cavity of a rat, produces an average open-circuit voltage of 0.57 V. This implanted GBFC delivered a power output of 38.7 µW, which corresponded to a power density of 193.5 µW cm(-2) and a volumetric power of 161 µW mL(-1). We demonstrate that one single implanted enzymatic GBFC can power a light-emitting diode (LED), or a digital thermometer. In addition, no signs of rejection or inflammation were observed after 110 days implantation in the rat.


Assuntos
Fontes de Energia Bioelétrica , Glucose Oxidase/metabolismo , Glucose/metabolismo , Animais , Técnicas Biossensoriais , Líquidos Corporais/metabolismo , Nanotubos de Carbono/química , Oxirredução , Ratos
4.
Plant Mol Biol ; 45(3): 307-15, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11292076

RESUMO

The chloroplast chromosome of spinach (Spinacia oleracea) is a double-stranded circular DNA molecule of 150,725 nucleotide pairs. A comparison of this chromosome with those of the three other autotrophic dicotyledons for which complete DNA sequences of plastid chromosomes are available confirms a conserved overall structure. Three classes of open reading frames were distinguished: (1) genes of known function which include 108 unique loci, (2) three hypothetical chloroplast reading frames (ycfs) that are highly conserved interspecifically, and (3) species-specific or rapidly diverging 'open reading frames'. A detailed transcript study of one of the latter (ycf15) shows that these loci may be transcribed, but do not constitute protein-coding genes.


Assuntos
DNA de Cloroplastos/genética , Spinacia oleracea/genética , Sequência de Bases , DNA de Cloroplastos/química , DNA Circular/genética , Genes de Plantas/genética , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...