Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cereb Cortex ; 32(9): 1978-1992, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-34649280

RESUMO

There is growing evidence showing that the representation of the human "self" recruits special systems across different functions and modalities. Compared to self-face and self-body representations, few studies have investigated neural underpinnings specific to self-voice. Moreover, self-voice stimuli in those studies were consistently presented through air and lacking bone conduction, rendering the sound of self-voice stimuli different to the self-voice heard during natural speech. Here, we combined psychophysics, voice-morphing technology, and high-density EEG in order to identify the spatiotemporal patterns underlying self-other voice discrimination (SOVD) in a population of 26 healthy participants, both with air- and bone-conducted stimuli. We identified a self-voice-specific EEG topographic map occurring around 345 ms post-stimulus and activating a network involving insula, cingulate cortex, and medial temporal lobe structures. Occurrence of this map was modulated both with SOVD task performance and bone conduction. Specifically, the better participants performed at SOVD task, the less frequently they activated this network. In addition, the same network was recruited less frequently with bone conduction, which, accordingly, increased the SOVD task performance. This work could have an important clinical impact. Indeed, it reveals neural correlates of SOVD impairments, believed to account for auditory-verbal hallucinations, a common and highly distressing psychiatric symptom.


Assuntos
Voz , Percepção Auditiva , Eletroencefalografia , Alucinações/psicologia , Humanos , Lobo Temporal
2.
Acta Neurochir (Wien) ; 163(5): 1213-1226, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33686522

RESUMO

Surgical treatment of tumors, epileptic foci or of vascular origin, requires a detailed individual pre-surgical workup and intra-operative surveillance of brain functions to minimize the risk of post-surgical neurological deficits and decline of quality of life. Most attention is attributed to language, motor functions, and perception. However, higher cognitive functions such as social cognition, personality, and the sense of self may be affected by brain surgery. To date, the precise localization and the network patterns of brain regions involved in such functions are not yet fully understood, making the assessment of risks of related post-surgical deficits difficult. It is in the interest of neurosurgeons to understand with which neural systems related to selfhood and personality they are interfering during surgery. Recent neuroscience research using virtual reality and clinical observations suggest that the insular cortex, medial prefrontal cortex, and temporo-parietal junction are important components of a neural system dedicated to self-consciousness based on multisensory bodily processing, including exteroceptive and interoceptive cues (bodily self-consciousness (BSC)). Here, we argue that combined extra- and intra-operative approaches using targeted cognitive testing, functional imaging and EEG, virtual reality, combined with multisensory stimulations, may contribute to the assessment of the BSC and related cognitive aspects. Although the usefulness of particular biomarkers, such as cardiac and respiratory signals linked to virtual reality, and of heartbeat evoked potentials as a surrogate marker for intactness of multisensory integration for intra-operative monitoring has to be proved, systemic and automatized testing of BSC in neurosurgical patients will improve future surgical outcome.


Assuntos
Mapeamento Encefálico , Procedimentos Neurocirúrgicos , Autoimagem , Imagem Corporal , Cognição , Potenciais Evocados/fisiologia , Frequência Cardíaca/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...