Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 175: 116725, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744219

RESUMO

Qualitative alterations in type I collagen due to pathogenic variants in the COL1A1 or COL1A2 genes, result in moderate and severe Osteogenesis Imperfecta (OI), a rare disease characterized by bone fragility. The TGF-ß signaling pathway is overactive in OI patients and certain OI mouse models, and inhibition of TGF-ß through anti-TGF-ß monoclonal antibody therapy in phase I clinical trials in OI adults is rendering encouraging results. However, the impact of TGF-ß inhibition on osteogenic differentiation of mesenchymal stem cells from OI patients (OI-MSCs) is unknown. The following study demonstrates that pediatric skeletal OI-MSCs have imbalanced osteogenesis favoring the osteogenic commitment. Galunisertib, a small molecule inhibitor (SMI) that targets the TGF-ß receptor I (TßRI), favored the final osteogenic maturation of OI-MSCs. Mechanistically, galunisertib downregulated type I collagen expression in OI-MSCs, with greater impact on mutant type I collagen, and concomitantly, modulated the expression of unfolded protein response (UPR) and autophagy markers. In vivo, galunisertib improved trabecular bone parameters only in female oim/oim mice. These results further suggest that type I collagen is a tunable target within the bone ECM that deserves investigation and that the SMI, galunisertib, is a promising new candidate for the anti-TGF-ß targeting for the treatment of OI.


Assuntos
Colágeno Tipo I , Regulação para Baixo , Células-Tronco Mesenquimais , Osteogênese Imperfeita , Osteogênese , Pirazóis , Quinolinas , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/tratamento farmacológico , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Animais , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Regulação para Baixo/efeitos dos fármacos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Feminino , Quinolinas/farmacologia , Camundongos , Criança , Pirazóis/farmacologia , Masculino , Diferenciação Celular/efeitos dos fármacos , Mutação , Modelos Animais de Doenças , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Pré-Escolar , Células Cultivadas , Fator de Crescimento Transformador beta/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
2.
Int J Mol Sci ; 23(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35163787

RESUMO

The incidence of bone-related disorders is continuously growing as the aging of the population in developing countries continues to increase. Although therapeutic interventions for bone regeneration exist, their effectiveness is questioned, especially under certain circumstances, such as critical size defects. This gap of curative options has led to the search for new and more effective therapeutic approaches for bone regeneration; among them, the possibility of using extracellular vesicles (EVs) is gaining ground. EVs are secreted, biocompatible, nano-sized vesicles that play a pivotal role as messengers between donor and target cells, mediated by their specific cargo. Evidence shows that bone-relevant cells secrete osteoanabolic EVs, whose functionality can be further improved by several strategies. This, together with the low immunogenicity of EVs and their storage advantages, make them attractive candidates for clinical prospects in bone regeneration. However, before EVs reach clinical translation, a number of concerns should be addressed. Unraveling the EVs' mode of action in bone regeneration is one of them; the molecular mediators driving their osteoanabolic effects in acceptor cells are now beginning to be uncovered. Increasing the functional and bone targeting abilities of EVs are also matters of intense research. Here, we summarize the cell sources offering osteoanabolic EVs, and the current knowledge about the molecular cargos that mediate bone regeneration. Moreover, we discuss strategies under development to improve the osteoanabolic and bone-targeting potential of EVs.


Assuntos
Regeneração Óssea , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Humanos , MicroRNAs/genética , Pesquisa Translacional Biomédica
3.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36613624

RESUMO

Osteogenesis imperfecta is a rare genetic disorder characterized by bone fragility, due to alterations in the type I collagen molecule. It is a very heterogeneous disease, both genetically and phenotypically, with a high variability of clinical phenotypes, ranging from mild to severe forms, the most extreme cases being perinatal lethal. There is no curative treatment for OI, and so great efforts are being made in order to develop effective therapies. In these attempts, the in vivo preclinical studies are of paramount importance; therefore, serious analysis is required to choose the right murine OI model able to emulate as closely as possible the disease of the target OI population. In this review, we summarize the features of OI murine models that have been used for preclinical studies until today, together with recently developed new murine models. The bone parameters that are usually evaluated in order to determine the relevance of new developing therapies are exposed, and finally, current and innovative therapeutic strategies attempts considered in murine OI models, along with their mechanism of action, are reviewed. This review aims to summarize the in vivo studies developed in murine models available in the field of OI to date, in order to help the scientific community choose the most accurate OI murine model when developing new therapeutic strategies capable of improving the quality of life.


Assuntos
Osteogênese Imperfeita , Camundongos , Animais , Osteogênese Imperfeita/genética , Qualidade de Vida , Colágeno Tipo I/genética , Osso e Ossos , Modelos Animais de Doenças
4.
Sci Data ; 8(1): 240, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526510

RESUMO

The development of new effective and safer therapies for osteoporosis, in addition to improved diagnostic and prevention strategies, represents a serious need in the scientific community. Micro-CT image-based analyses in association with biomechanical testing have become pivotal tools in identifying osteoporosis in animal models by assessment of bone microarchitecture and resistance, as well as bone strength. Here, we describe a dataset of micro-CT scans and reconstructions of 15 whole femurs and biomechanical tests on contralateral femurs from C57BL/6JOlaHsd ovariectomized (OVX), resembling human post-menopausal osteoporosis, and sham operated (sham) female mice. Data provided for each mouse include: the acquisition images (.tiff), the reconstructed images (.bmp) and an.xls file containing the maximum attenuations for each reconstructed image. Biomechanical data include an.xls file with the recorded load-displacement, a movie with the filmed test and an.xls file collecting all biomechanical results.


Assuntos
Fêmur/diagnóstico por imagem , Osteoporose , Microtomografia por Raio-X , Animais , Fenômenos Biomecânicos , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Osteoporose/diagnóstico por imagem , Osteoporose/fisiopatologia , Ovariectomia
5.
Int J Mol Sci ; 22(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34299344

RESUMO

Bone damage leading to bone loss can arise from a wide range of causes, including those intrinsic to individuals such as infections or diseases with metabolic (diabetes), genetic (osteogenesis imperfecta), and/or age-related (osteoporosis) etiology, or extrinsic ones coming from external insults such as trauma or surgery. Although bone tissue has an intrinsic capacity of self-repair, large bone defects often require anabolic treatments targeting bone formation process and/or bone grafts, aiming to restore bone loss. The current bone surrogates used for clinical purposes are autologous, allogeneic, or xenogeneic bone grafts, which although effective imply a number of limitations: the need to remove bone from another location in the case of autologous transplants and the possibility of an immune rejection when using allogeneic or xenogeneic grafts. To overcome these limitations, cutting edge therapies for skeletal regeneration of bone defects are currently under extensive research with promising results; such as those boosting endogenous bone regeneration, by the stimulation of host cells, or the ones driven exogenously with scaffolds, biomolecules, and mesenchymal stem cells as key players of bone healing process.


Assuntos
Regeneração Óssea/fisiologia , Osso e Ossos/fisiologia , Animais , Rejeição de Enxerto/fisiopatologia , Humanos , Células-Tronco Mesenquimais/fisiologia , Osteogênese/fisiologia , Alicerces Teciduais/química , Cicatrização/fisiologia
6.
Cells ; 9(12)2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297501

RESUMO

Bone mineral density, a bone matrix parameter frequently used to predict fracture risk, is not the only one to affect bone fragility. Other factors, including the extracellular matrix (ECM) composition and microarchitecture, are of paramount relevance in this process. The bone ECM is a noncellular three-dimensional structure secreted by cells into the extracellular space, which comprises inorganic and organic compounds. The main inorganic components of the ECM are calcium-deficient apatite and trace elements, while the organic ECM consists of collagen type I and noncollagenous proteins. Bone ECM dynamically interacts with osteoblasts and osteoclasts to regulate the formation of new bone during regeneration. Thus, the composition and structure of inorganic and organic bone matrix may directly affect bone quality. Moreover, proteins that compose ECM, beyond their structural role have other crucial biological functions, thanks to their ability to bind multiple interacting partners like other ECM proteins, growth factors, signal receptors and adhesion molecules. Thus, ECM proteins provide a complex network of biochemical and physiological signals. Herein, we summarize different ECM factors that are essential to bone strength besides, discussing how these parameters are altered in pathological conditions related with bone fragility.


Assuntos
Osso e Ossos/metabolismo , Matriz Extracelular/metabolismo , Osteoclastos/metabolismo , Transdução de Sinais , Animais , Densidade Óssea , Matriz Óssea/metabolismo , Colágeno/química , Proteínas da Matriz Extracelular/metabolismo , Fraturas Ósseas/metabolismo , Homeostase , Humanos , Integrinas/metabolismo , Metaloproteinases da Matriz/metabolismo , Osteoblastos/metabolismo , Osteogênese Imperfeita/metabolismo , Osteoporose/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas Wnt/metabolismo
7.
Cells ; 9(6)2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466483

RESUMO

Lamin A/C, intermediate filament proteins from the nuclear lamina encoded by the LMNA gene, play a central role in mediating the mechanosignaling of cytoskeletal forces into nucleus. In fact, this mechanotransduction process is essential to ensure the proper functioning of other tasks also mediated by lamin A/C: the structural support of the nucleus and the regulation of gene expression. In this way, lamin A/C is fundamental for the migration and differentiation of mesenchymal stem cells (MSCs), the progenitors of osteoblasts, thus affecting bone homeostasis. Bone formation is a complex process regulated by chemical and mechanical cues, coming from the surrounding extracellular matrix. MSCs respond to signals modulating the expression levels of lamin A/C, and therefore, adapting their nuclear shape and stiffness. To promote cell migration, MSCs need soft nuclei with low lamin A content. Conversely, during osteogenic differentiation, lamin A/C levels are known to be increased. Several LMNA mutations present a negative impact in the migration and osteogenesis of MSCs, affecting bone tissue homeostasis and leading to pathological conditions. This review aims to describe these concepts by discussing the latest state-of-the-art in this exciting area, focusing on the relationship between lamin A/C in MSCs' function and bone tissue from both, health and pathological points of view.


Assuntos
Osso e Ossos/citologia , Diferenciação Celular , Movimento Celular , Lamina Tipo A/metabolismo , Células-Tronco Mesenquimais/citologia , Animais , Humanos , Osteogênese
8.
Int J Mol Sci ; 21(5)2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121265

RESUMO

Osteoporosis, the most common chronic metabolic bone disease, is characterized by low bone mass and increased bone fragility. Nowadays more than 200 million individuals are suffering from osteoporosis and still the number of affected people is dramatically increasing due to an aging population and longer life, representing a major public health problem. Current osteoporosis treatments are mainly designed to decrease bone resorption, presenting serious adverse effects that limit their safety for long-term use. Numerous studies with mesenchymal stem cells (MSCs) have helped to increase the knowledge regarding the mechanisms that underlie the progression of osteoporosis. Emerging clinical and molecular evidence suggests that inflammation exerts a significant influence on bone turnover, thereby on osteoporosis. In this regard, MSCs have proven to possess broad immunoregulatory capabilities, modulating both adaptive and innate immunity. Here, we will discuss the role that MSCs play in the etiopathology of osteoporosis and their potential use for the treatment of this disease.


Assuntos
Transplante de Células-Tronco Mesenquimais , Osteoporose/terapia , Biomarcadores/metabolismo , Remodelação Óssea , Humanos , Inflamação/patologia , Células-Tronco Mesenquimais/citologia , Osteoporose/patologia , Osteoporose/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...