Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 122(4): 1114-1123, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29272128

RESUMO

Quantum chemical calculations have been performed to study the photocycle of [Ru(bpy)3]2+, a complex that is extensively used as an electron donor in photocatalytic reactions. After the initial spin-allowed excitation from the nonmagnetic ground state to a singlet state of metal-to-ligand charge transfer character, the system undergoes a rapid intersystem crossing to a triplet state of equal character. The calculations indicate a lifetime of 10 fs, in good agreement with experimental estimates. Important factors for this extremely fast intersystem crossing are the large spin-orbit coupling and the large vibrational overlap of the states involved. Both MLCT states are delocalized over the three bipyridine ligands, but the delocalized electron can easily increase its degree of localization. The hopping parameters have been calculated and found to be large for the localization on two ligands and subsequently on one. The combination of localization and geometry relaxation creates a rather long-lived trapped triplet MLCT state with a calculated lifetime of 9 µs. The addition of methyl groups on the bipyridine ligands decreases the ligand field and consequently lowers the metal-centered triplet states. This could eventually lead to opening of a fast deactivation channel of the 3MLCT states to the initial nonmagnetic states via the triplet ligand field states as occurs in the corresponding Fe(II) complex.

2.
Materials (Basel) ; 10(12)2017 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-29168765

RESUMO

Azo compounds are organic photochromic systems that have the possibility of switching between cis and trans isomers under irradiation. The different photochemical properties of these isomers make azo compounds into good light-triggered switches, and their significantly different geometries make them very interesting as components in molecular engines or mechanical switches. For instance, azo ligands are used in coordination complexes to trigger photoresponsive properties. The light-induced trans-to-cis isomerization of phenylazopyridine (PAPy) plays a fundamental role in the room-temperature switchable spin crossover of Ni-porphyrin derivatives. In this work, we present a computational study developed at the SA-CASSCF/CASPT2 level (State Averaged Complete Active Space Self Consistent Field/CAS second order Perturbation Theory) to elucidate the mechanism, up to now unknown, of the cis-trans photoisomerization of 3-PAPy. We have analyzed the possible reaction pathways along its lowest excited states, generated by excitation of one or two electrons from the lone pairs of the N atoms of the azo group (nazoπ*² and nazo²π*² states), from a π delocalized molecular orbital (ππ* state), or from the lone pair of the N atom of the pyridine moiety (npyπ* state). Our results show that the mechanism proceeds mainly along the rotation coordinate in both the nazoπ* and ππ* excited states, although the nazo²π*² state can also be populated temporarily, while the npyπ* does not intervene in the reaction. For rotationally constrained systems, accessible paths to reach the cis minimum along planar geometries have also been located, again on the nazoπ* and ππ* potential energy surfaces, while the nazo²π*² and npyπ* states are not involved in the reaction. The relative energies of the different paths differ from those found for azobenzene in a previous work, so our results predict some differences between the reactivities of both compounds.

3.
Inorg Chem ; 55(11): 5274-80, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27163862

RESUMO

Electronic structure calculations have been performed on four different Mn corrole and corrolazine complexes to clarify the role of the imide axial ligand on the relative stability of the different spin states and the stabilization of the high-valent Mn ion in these complexes. Multiconfigurational perturbation theory energy calculations on the DFT-optimized geometries show that all complexes have a singlet ground state except the complex with the strongest electron-withdrawing substituent on the imide axial ligand, which is found to have a triplet ground state. The analysis of the σ and π interaction between the metal and imide ligand shows that this spin crossover is caused by a subtle interplay of geometrical factors (Mn-N distance and coordination angle) and the electron-withdrawing character of the substituent on the imide, which reduces the electron donation to the metal center. The analysis of the multiconfigurational wave functions reveals that the formally Mn(V) ion is stabilized by an important electron transfer from both the equatorial corrole/corrolazine ligand and the axial imide. The macrocycle donates roughly half an electron, being somewhere between the closed-shell trianionic and the dianionic radical form. The imide ligand transfers 2.5 electrons to the metal center, resulting in an effective d-electron count close to five in all complexes.

4.
Phys Chem Chem Phys ; 17(1): 217-25, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25381934

RESUMO

Reversible, room-temperature light-induced spin-crossover has been reported in a Ni-porphyrin functionalized with a phenylazopyridine (PAPy) ligand (Venkataramani et al., Science, 2011, 331, 445). Upon light irradiation (500 nm), the azopyridine moiety induces a change in the Ni(II) coordination sphere from square planar (n = 4) to square pyramid (n = 5), leading to a change in the total spin of the molecule from S = 0 to S = 1. The trans-cis isomerization in the azopyridine ligand has been proposed to trigger the spin-crossover effect. However, the radiation used to induce the HS state is about 135 nm red-shifted with respect to the radiation used for trans-cis isomerization of the N=N double bond in other compounds. To elucidate the light-induced spin-crossover mechanism of this Ni(II) compound, a combined DFT/CASSCF/CASPT2 study has been performed to determine the most stable cis and trans conformers with n = 4 or n = 5, and to characterize the excitation that triggers the SCO process. π-π interactions between porphyrin and PAPy are shown to play an essential role in the spin crossover.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA