Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37687305

RESUMO

Water scarcity due to overuse and growing water pollution has led to the need for upgrading of conventional methods of wastewater treatment. The biological synthesis of zinc oxide nanoparticles (ZnO-NPs) and their photocatalytic capacity to degrade contaminants offer a promising and environment-friendly approach to municipal wastewater treatment. This technique is advantageous due to its cost-effectiveness, sustainability, and reduction in toxic residual substances. In this study, microbial-synthesized ZnO-NPs were used for the treatment of municipal wastewater. The objective of this study was to evaluate the potential of treated wastewater for wheat crop cultivation. Zinc oxide nanoparticles were synthesized from a pre-isolated bacterial strain, namely Shewanela sp., and characterized using UV-VIS, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) analyses. The results showed that after the treatment of wastewater, the concentration of total dissolve solids (TDS), the chemical oxygen demand (COD), and sulfate and phosphate levels decreased by 76.5%, 57.1%, 81.1%, and 67.4%, respectively. However, the application of treated wastewater increased chlorophyll, carotenoids, and antioxidants by 45%, 40.8%, and 10.5 to 30.6%, respectively. Further, the application of treated wastewater also significantly decreased oxidative stress induced by hydrogen peroxide (H2O2) and malondialdehyde (MDA) by 8.1% and 30.1%, respectively. In conclusion, biosynthesized ZnO-NPs could be an important choice to treat municipal wastewater and to improve wheat productivity.

2.
Plants (Basel) ; 12(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36679005

RESUMO

In recent years, the global agricultural system has been unfavorably impacted by adverse environmental changes. These changes in the climate, in turn, have altered the abiotic conditions of plants, affecting plant growth, physiology and production. Abiotic stress in plants is one of the main obstacles to global agricultural production and food security. Therefore, there is a need for the development of novel approaches to overcome these problems and achieve sustainability. Nanotechnology has emerged as one such novel approach to improve crop production, through the utilization of nanoscale products, such as nanofertilizer, nanofungicides, nanoherbicides and nanopesticides. Their ability to cross cellular barriers makes nanoparticles suitable for their application in agriculture. Since they are easily soluble, smaller, and effective for uptake by plants, nanoparticles are widely used as a modern agricultural tool. The implementation of nanoparticles has been found to be effective in improving the qualitative and quantitative aspects of crop production under various biotic and abiotic stress conditions. This review discusses various abiotic stresses to which plants are susceptible and highlights the importance of the application of nanoparticles in combating abiotic stress, in addition to the major physiological, biochemical and molecular-induced changes that can help plants tolerate stress conditions. It also addresses the potential environmental and health impacts as a result of the extensive use of nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...