Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Luminescence ; 38(5): 613-624, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36929638

RESUMO

Novel thermochromic and vapochromic paper substrates were prepared via screen printing with anthocyanin extract in the presence of ferrous sulfate mordant, resulting in multi-stimuli responsive colorimetric paper sheets. Environmentally friendly anthocyanin extract was obtained from red-cabbage (Brassica oleracea var. capitata L.) to function as spectroscopic probe in coordination with ferrous sulfate mordant. Pink anthocyanin/resin nanocomposite films immobilized onto paper surface were developed by well-dispersion of anthocyanin extract as a colorimetric probe in a binding agent without agglomeration. As demonstrated by CIE colorimetric studies, the pink (λmax = 418 nm) film deposited onto paper surface turns greenish-yellow (λmax = 552 nm) upon heating from 25 to 75°C, demonstrating new thermochromic film for anti-counterfeiting applications. The thermochromic effects were investigated at different concentrations of the anthocyanin extract. Upon exposure to ammonia gas, the color of the anthocyanin-printed sheets changes rapidly from pink to greenish-yellow, and then immediately returns to pink after taking the gaseous ammonia stimulus away, demonstrating vapochromic effect. The current sensor strip showed a detection limit for ammonia gas in the range 50-300 ppm. Both thermochromism and vapochromism showed high reversibility without fatigue. In addition to studying the rheological properties of the prepared composites, the morphological and mechanical properties of the printed cellulose substrates were also studied.


Assuntos
Amônia , Antocianinas , Antocianinas/química , Celulose , Extratos Vegetais
2.
ACS Omega ; 7(19): 16766-16777, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35601306

RESUMO

Persistent bad breath has been reported as a sign of serious diabetes health conditions. If an individual's breath has a strong odor of acetone, it may indicate high levels of ketones in the blood owing to diabetic ketoacidosis. Thus, acetone gas in the breath of patients with diabetes can be detected using the current easy-to-use fluorescent test dipstick. In another vein, rice straw waste is the most well-known solid pollutant worldwide. Thus, finding a simple technique to change rice straw into a valuable material is highly important. A straightforward and environmentally friendly approach for reprocessing rice straw as a starting material for the creation of fluorescent nitrogen-doped carbon dots (NCDs) has been established. The preparation process of NCDs was carried out via one-pot hydrothermal carbonization using NH4OH as a passivation substance. A testing strip was developed on the basis of cellulose CD nanoparticles (NPs) immobilized onto cellulose paper assay. The NCDs demonstrated a quantum yield of 23.76%. A fluorescence wavelength was detected at 443 nm upon applying an excitation wavelength of 354 nm. NCDs demonstrated remarkable selectivity for acetone gas as their fluorescence was definitely exposed to quenching by acetone as a consequence of the inner filter effect. A linear correlation was observed across the concentration range of 0.5-150 mM. To detect and measure acetone gas, the present cellulose paper strip has a "switch off" fluorescent signal. A readout limit was accomplished for an aqueous solution of acetone as low as 0.5 mM under ambient conditions. The chromogenic fluorescence of the cellulose assay responsiveness depends on the fluorescence quenching characteristic of the cellulose carbon dots in acetone. A thin fluorescent cellulose carbon dot layer was deposited onto the surface of cellulose strips by a simple impregnation process. CDs were made using NP morphology and analyzed using infrared spectroscopy and transmission electron microscopy. The carbon dot distribution on the paper strip was evaluated by scanning electron microscope and energy-dispersive X-ray analysis. The absorption and fluorescence spectral analyses were investigated. The paper sheets' mechanical qualities were also examined.

3.
Int J Biol Macromol ; 211: 390-399, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35580745

RESUMO

Novel multifunctional wound dressing with the ability to protect, cure and sense the healing process, was developed. Red-cabbage extract has been reported to exhibit bioactive compounds with the ability to function as antioxidant, antiinflammatory, anticancer, antibacterial, antifungal, and antiviral agent, as well as a natural pH-sensory chromophoric material. An anthocyanin extract was prepared from Red-cabbage (Brassica oleracea L. Var. capitata). The anthocyanins extract was encapsulated into calcium alginate in the presence of potash alum mordant, which was then applied to the surface of the cotton gauze. Red-cabbage based anthocyanin chromophoric extract was encapsulated at different concentrations into alginate-based hydrogel and immobilized into cotton gauze to provide a smart therapeutic pH-responsive wound dress to function as an antimicrobial and biochromic matrix providing a comfortable dress sensor to monitor the wound status. Decreasing the pH of a wound mimic solution caused a blue shift from 579 to 437 nm. The anthocyanin spectroscopic probe's halochromic activity demonstrated a colorimetric change from purple to pink, which was critical to the dyed cotton diagnostic assay's biochromic performance. The colorimetric parameters of the prepared dressing sensor were proved by UV-Vis absorbance and CIE Lab coordinates. Both mechanical and morphological properties of the prepared dressing were studied using different analytical methods. The effect of anthocyanin concentration on the mechanical, water vapor permeability, water absorption and morphological properties of the wound dressing were investigated. No substantial flaws in air-permeability or bend length were detected after dyeing. The colored cotton gauze samples were tested for their high colorfastness. The cytotoxicity and antimicrobial activity of the prepared biochromic cotton gauze were explored. The dyed cotton samples exhibited no cytotoxicity and improved antimicrobial activity with increasing the anthocyanin ratio on cotton surface.


Assuntos
Brassica , Nanopartículas , Alginatos , Antocianinas/química , Antocianinas/farmacologia , Bandagens , Brassica/química , Corantes , Extratos Vegetais/farmacologia
4.
Environ Sci Pollut Res Int ; 29(40): 60173-60188, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35419683

RESUMO

Sugarcane bagasse agricultural waste has been one of the most common solid pollutants worldwide. Thus, introducing a simple method to convert sugarcane bagasse into value-added materials has been highly significant. Herein, we develop a simple and green strategy to reprocess sugarcane bagasse as a starting material for the preparation of graphene oxide nanosheets toward the preparation of novel photoluminescent, hydrophobic, and anticorrosive epoxy nanocomposite coatings integrated with lanthanide-doped aluminate nanoparticles. Environmentally friendly graphene oxide (GO) nanostructures were provided by a single-step preparation procedure from sugarcane bagasse (SCB) agricultural waste using ferrocene-based oxidation under muffled conditions. The oxidized SCB nanostructures were applied as a drier, anticorrosion, and crosslinking agent for epoxy coatings. Different concentrations of pigment phosphor were applied onto the epoxy coating. The generated epoxy-graphene-aluminate (EGA) paints were then coated onto mild steel. The hydrophobic properties and hardness as well as resistance to scratch of the EGA paints were examined. The transparency and colorimetric screening of the EGA nanocomposite paints were determined by the absorption spectral analysis and CIE Lab parameters. The luminescent translucent paints demonstrated a bright green emission at 520 nm when excited at 372 nm. The anticorrosion properties of the painted steel submerged in NaCl(aq) were inspected by the electrochemical impedance spectral (EIS) method. The EGA paints with phosphor (11% w/w) exhibited the most distinct anti-corrosion properties and long-persistent luminescence. The produced paints displayed high durability and photostability.


Assuntos
Grafite , Nanocompostos , Saccharum , Celulose/química , Grafite/química , Pintura , Saccharum/química , Aço
5.
Luminescence ; 36(4): 964-976, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33590669

RESUMO

A simple method for the preparation of multifunctional nanocomposite was developed towards the production of water-repellent, electrically conductive, and photoluminescent film onto cotton fibres. The nanocomposite was composed of lanthanide-doped strontium aluminium oxide and silicon rubber dispersed in petroleum ether. The electrically conductive fabric was woven from nickel strips twisted with cotton filaments as core yarns, which were wrapped with pure cotton yarns. The nanoparticles (NPs) of lanthanide-doped strontium aluminium oxide were mixed with environmentally friendly room-temperature vulcanizing silicon rubber (RTV-SR) dissolved in petroleum ether to give the silicon rubber/strontium aluminate nanocomposites. The produced nanocomposites were applied onto electrically conductive cotton/nickel fibres using spray-coating technology. The surface of the cotton/nickel fibres showed different hierarchical morphologies depending on the total content of the silicon rubber. Additionally, the superhydrophobic effect was found to be improved upon increasing the total content of the luminescence pigment NPs. The morphologies of the prepared phosphor NPs were determined using transmission electron microscopy (TEM). The generated transparent luminescence film demonstrated an absorbance peak at 358 nm and an emission peak at 515 nm. Photoluminescence of cotton fibres was monitored with the generation of different colours, including grey, green-yellow, bright white, and turquoise shades as recognized using CIE Laboratory colorimetric parameters. The emission, excitation, lifetime, and decay time spectra of the phosphorescent spray-coated cotton samples were studied. The surface morphologies and chemical compositions of the spray-coated cotton/nickel were investigated using wavelength-dispersive X-ray fluorescence (WD-XRF), scanning electron microscope (SEM), Fourier-transform infrared spectra (FTIR), and energy-dispersive X-ray analyzer (EDAX). The superhydrophobic effects were characterized by measuring static water contact angle. The comfort characteristics of the treated cotton/nickel substrates were assessed by investigating their air permeability and stiffness. The treated cotton/nickel fabrics also displayed an antimicrobial activity. The results displayed water repellence with high electrical conductivity and photoluminescence properties.


Assuntos
Fibra de Algodão , Nanocompostos , Condutividade Elétrica , Interações Hidrofóbicas e Hidrofílicas , Luminescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...