Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 298(8): 102213, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35779631

RESUMO

1,25-dihydroxyvitamin D (VD) regulates intestinal calcium absorption in the small intestine (SI) and also reduces risk of colonic inflammation and cancer. However, the intestine compartment-specific target genes of VD signaling are unknown. Here, we examined VD action across three functional compartments of the intestine using RNA-seq to measure VD-induced changes in gene expression and Chromatin Immunoprecipitation with next generation sequencing to measure vitamin D receptor (VDR) genomic binding. We found that VD regulated the expression of 55 shared transcripts in the SI crypt, SI villi, and in the colon, including Cyp24a1, S100g, Trpv6, and Slc30a10. Other VD-regulated transcripts were unique to the SI crypt (162 up, 210 down), villi (199 up, 63 down), or colon (102 up, 28 down), but this did not correlate with mRNA levels of the VDR. Furthermore, bioinformatic analysis identified unique VD-regulated biological functions in each compartment. VDR-binding sites were found in 70% of upregulated genes from the colon and SI villi but were less common in upregulated genes from the SI crypt and among downregulated genes, suggesting some transcript-level VD effects are likely indirect. Consistent with this, we show that VD regulated the expression of other transcription factors and their downstream targets. Finally, we demonstrate that compartment-specific VD-mediated gene expression was associated with compartment-specific VDR-binding sites (<30% of targets) and enrichment of intestinal transcription factor-binding motifs within VDR-binding peaks. Taken together, our data reveal unique spatial patterns of VD action in the intestine and suggest novel mechanisms that could account for compartment-specific functions of this hormone.


Assuntos
Receptores de Calcitriol , Vitamina D , Animais , Genômica , Intestinos , Camundongos , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Vitamina D/análogos & derivados , Vitamina D/farmacologia , Vitamina D3 24-Hidroxilase/genética
2.
J Biol Chem ; 298(3): 101616, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065959

RESUMO

Vitamin D receptor (VDR) levels are highest in the intestine where it mediates 1,25 dihydroxyvitamin D-induced gene expression. However, the mechanisms controlling high intestinal VDR gene expression are unknown. Here, we used Assay for Transposase-Accessible Chromatin using Sequencing (ATAC-Seq) to identify the regulatory sites controlling intestine-specific Vdr gene expression in the small intestine (villi and crypts) and colon of developing, adult, and aged mice. We identified 17 ATAC peaks in a 125 kb region from intron 3 to -55.8 kb from exon 1 of the Vdr gene. Interestingly, many of these peaks were missing/reduced in the developing intestine. Chromatin ImmunoPrecipitation-Sequencing (ChIP-Seq) peaks for intestinal transcription factors (TFs) were present within the ATAC peaks and at HiChIP looping attachments that connected the ATAC/TF ChIP peaks to the transcription start site and CCCTF-binding factor sites at the borders of the Vdr gene regulatory domain. Intestine-specific regulatory sites were identified by comparing ATAC peaks to DNAse-Seq data from other tissues that revealed tissue-specific, evolutionary conserved, and species-specific peaks. Bioinformatics analysis of human DNAse-Seq peaks revealed polymorphisms that disrupt TF-binding sites. Our analysis shows that mouse intestinal Vdr gene regulation requires a complex interaction of multiple distal regulatory regions and is controlled by a combination of intestinal TFs. These intestinal regulatory sites are well conserved in humans suggesting that they may be key components of VDR regulation in both mouse and human intestines.


Assuntos
Intestinos , Receptores de Calcitriol , Animais , Desoxirribonucleases/genética , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Intestinos/metabolismo , Camundongos , Receptores de Calcitriol/biossíntese , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Fatores de Transcrição/metabolismo
3.
Cell Rep ; 34(4): 108679, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33503426

RESUMO

Cells in renewing tissues exhibit dramatic transcriptional changes as they differentiate. The contribution of chromatin looping to tissue renewal is incompletely understood. Enhancer-promoter interactions could be relatively stable as cells transition from progenitor to differentiated states; alternatively, chromatin looping could be as dynamic as the gene expression from their loci. The intestinal epithelium is the most rapidly renewing mammalian tissue. Proliferative cells in crypts of Lieberkühn sustain a stream of differentiated cells that are continually shed into the lumen. We apply chromosome conformation capture combined with chromatin immunoprecipitation (HiChIP) and sequencing to measure enhancer-promoter interactions in progenitor and differentiated cells of the intestinal epithelium. Despite dynamic gene regulation across the differentiation axis, we find that enhancer-promoter interactions are relatively stable. Functionally, we find HNF4 transcription factors are required for chromatin looping at target genes. Depletion of HNF4 disrupts local chromatin looping, histone modifications, and target gene expression. This study provides insights into transcriptional regulatory mechanisms governing homeostasis in renewing tissues.


Assuntos
Fator 4 Nuclear de Hepatócito/genética , Mucosa Intestinal/fisiologia , Regiões Promotoras Genéticas/genética , Diferenciação Celular/genética , Cromatina/genética , Elementos Facilitadores Genéticos , Humanos , Mucosa Intestinal/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...