Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36365759

RESUMO

Researchers in science and industry are increasingly interested in conductive textiles. In this article, we have successfully prepared conductive textiles by applying a graphite dispersion to cotton fabric using a simple brush-coating-drying method and the solvents of dimethyl sulfoxide, dimethyl formamide, and a solvent mixture of both. The sheet resistance of the resulting cotton fabrics could be influenced by the type of polar solvent used to prepare the graphite dispersion and the concentration of graphite. In addition, the graphite cotton fabrics showed semiconductive behavior upon studying the resistance at different temperatures. A flexible strain sensor was fabricated using these graphite cotton fabrics for human motion detection. Most importantly, the resulting strain sensor functions even after 100 bending cycles, indicating its excellent reproducibility. In addition, our results have also shown that these graphite cotton fabrics can be used as electrical interconnects in electrical circuits without any visible degradation of the conductive cotton. Finally, a cotton electrical cycle switch was made using the graphite cotton fabrics and worked in the on and off state.

2.
ACS Omega ; 7(40): 35371-35386, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36249401

RESUMO

This article reviews conductive fabrics made with the conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), their fabrication techniques, and their applications. PEDOT:PSS has attracted interest in smart textile technology due to its relatively high electrical conductivity, water dispersibility, ease of manufacturing, environmental stability, and commercial availability. Several methods apply PEDOT:PSS to textiles. They include polymerization of the monomer, coating, dyeing, and printing methods. In addition, several studies have shown the conductivity of fabrics with the addition of PEDOT:PSS. The electrical properties of conductive textiles with a certain sheet resistance can be reduced by several orders of magnitude using PEDOT:PSS and polar solvents as secondary dopants. In addition, several studies have shown that the flexibility and durability of textiles coated with PEDOT:PSS can be improved by creating a composite with other polymers, such as polyurethane, which has high flexibility and extensibility. This improvement is due to the stronger bonding of PEDOT:PSS to the fabrics. Sensors, actuators, antennas, interconnectors, energy harvesting, and storage devices have been developed with PEDOT:PSS-based conductive fabrics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...