Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Vaccine ; 40(13): 2003-2010, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35193793

RESUMO

BACKGROUND: This is a community-based, retrospective, observational study conducted to determine effectiveness of the BBIBP-CorV inactivated vaccine in the real-world setting against hospital admissions and death. STUDY DESIGN: Study participants were selected from 214,940 PCR-positive cases of COVID-19 reported to the Department of Health, Abu Dhabi Emirate, United Arab Emirates (UAE) between September 01, 2020 and May 1, 2021. Of these, 176,640 individuals were included in the study who were aged ≥ 15 years with confirmed COVID-19 positive status who had records linked to their vaccination status. Those with incomplete or missing records were excluded (n = 38,300). Study participants were divided into three groups depending upon their vaccination status: fully vaccinated (two doses), partially vaccinated (single dose), and non-vaccinated. Study outcomes included COVID-19-related admissions to hospital general and critical care wards and death. Vaccine effectiveness for each outcome was based on the incidence density per 1000 person-years. RESULTS: The fully-, partially- and non-vaccinated groups included 62,931, 21,768 and 91,941 individuals, respectively. Based on the incidence rate ratios, the vaccine effectiveness in fully vaccinated individuals was 80%, 92%, and 97% in preventing COVID-19-related hospital admissions, critical care admissions, and death, respectively, when compared to the non-vaccinated group. No protection was observed for critical and non-critical care hospital admissions for the partially vaccinated group, while some protection against death was apparent, although statistically insignificant. CONCLUSIONS: In a COVID-19 pandemic, use of the Sinopharm BBIBP-CorV inactivated vaccine is effective in preventing severe disease and death in a two-dose regimen. Lack of protection with the single dose may be explained by insufficient seroconversion and/or neutralizing antibody responses, behavioral factors (i.e., false sense of protection), and/or other biological factors (emergence of variants, possibility of reinfection, duration of vaccine protection, etc.).


Assuntos
COVID-19 , Pandemias , Adolescente , COVID-19/epidemiologia , COVID-19/prevenção & controle , Hospitais , Humanos , Estudos Retrospectivos , SARS-CoV-2 , Emirados Árabes Unidos/epidemiologia , Vacinas de Produtos Inativados
3.
J Dairy Sci ; 105(3): 1862-1877, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34998543

RESUMO

Probiotics have received increased attention due to their nutritional and health-promoting benefits. However, their viability is often impeded during food processing as well as during their gastrointestinal transit before reaching the colon. In this study, probiotic strains Lactobacillus rhamnosus MF00960, Pediococcus pentosaceus MF000967, and Lactobacillus paracasei DSM20258 were encapsulated within sodium alginate, camel casein (CC), camel skin gelatin (CSG) and CC:CSG (1:1 wt/wt) wall materials. All 3 strains in encapsulated form showed an enhanced survival rate upon simulated gastrointestinal digestion compared with free cells. Among the encapsulating matrices, probiotics embedded in CC showed higher viability and is attributed to less porous structure of CC that provided more protection to entrapped probiotics cells. Similarly, thermal tolerance at 50°C and 70°C of all 3 probiotic strains were significantly higher upon encapsulation in CC and CC:CSG. Scanning electron microscope micrographs showed probiotic strains embedded in the dense protein matrix of CC and CSG. Fourier-transform infrared spectroscopy showed that CC- and CSG-encapsulated probiotic strains exhibited the amide bands with varying intensity with no significant change in the structural conformation. Probiotic strains encapsulated in CC and CC:CSG showed higher retention of inhibitory properties against α-glucosidase, α-amylase, dipeptidyl peptidase-IV, pancreatic lipase, and cholesteryl esterase compared with free cells upon exposure to simulated gastrointestinal digestion conditions. Therefore, CC alone or in combination with CSG as wall materials provided effective protection to cells, retained their bioactive properties, which was comparable to sodium alginate as wall materials. Thus, CC and CC:CSG can be an efficient wall material for encapsulation of probiotics for food applications.


Assuntos
Caseínas , Probióticos , Animais , Camelus , Cápsulas , Digestão , Gelatina , Viabilidade Microbiana , Leite , Probióticos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...