Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 6(1): 136-145, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38125602

RESUMO

With their notable thermal characteristics, fluids incorporating nanoparticles have significant importance in industrial processes. Due to the higher proficiency of hybrid nanofluid, this study is organized to observe the flow phenomenon and thermal characteristics of kerosene-oil-based hybrid ferrofluid in relation to the modified versions of two imperative Yamada-Ota and Xue models. A performance-based comparison is conducted for an incompressible hybrid ferrofluid in relation to the upgraded Yamada-Ota and Xue models. The magnetized flow mechanism in two dimensions is explored over a stretchable, curved sheet. With the ordinary kerosene oil liquid, the ferroparticles, namely cobalt ferrite and magnetite, are merged to form (CoFe2O4-Fe3O4/kerosene oil) hybrid ferrofluid. Mass and heat transport mechanisms are scrutinized with the execution of activation energy, convective constraints, Joule heating, exponential heat sources, and thermal radiation. Suitable ansatzes are utilized to achieve the dimensionless pattern of the equations that regulate the problem. To numerically explore the dimensionless equations, a powerful bvp4c strategy is implemented. On behalf of both considered models, the characteristics of hybrid ferrofluid relative to pertinent parameters are graphically investigated and comparatively analyzed. This study ensures that the improved Yamada-Ota model yields more proficient outcomes in comparison to the Xue model. Moreover, the concentration field demonstrates an escalating trend with the enhanced activation energy parameter.

2.
Sci Rep ; 13(1): 9491, 2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37303004

RESUMO

Non-Newtonian fluids are extensively employed in many different industries, such as the processing of plastics, the creation of electrical devices, lubricating flows, and the production of medical supplies. A theoretical analysis is conducted to examine the stagnation point flow of a 2nd-grade micropolar fluid into a porous material in the direction of a stretched surface under the magnetic field effect, which is stimulated by these applications. The stratification boundary conditions are imposed on the surface of the sheet. Generalized Fourier and Fick's laws with activation energy is also considered to discuss the heat and mass transportation. To obtain the dimensionless version of the flow modeled equations, an appropriate similarity variables are used. These transfer version of equations is solved numerically by the implement of the BVP4C technique on MATLAB. The graphical and numerical results are obtained for various emerging dimensionless parameters and discussed. It is noted that by the more accurate predictions of [Formula: see text] and M, the velocity sketch is decreased due to occurrence of resistance effect. Further, it is seen that larger estimation of micropolar parameter improves the angular velocity of the fluid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...